首页> 外文OA文献 >Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain
【2h】

Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain

机译:非下采样Contourlet变换域中基于空间频率激励脉冲耦合神经网络的图像融合算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nonsubsampled contourlet transform (NSCT) provides °exible multiresolution, anisotropy and directional expansion for images. Compared with the original contourlet transform, it is shift-invariant and can overcome the pseudo-Gibbs phenomena around singularities. Pulse Coupled Neural Networks (PCNN) is a visual cortex-inspired neural network and characterized by the global coupling and pulse synchronization of neurons. It has been proven suitable for image processing and successfully employed in image fusion. In this paper, NSCT is associated with PCNN and employed in image fusion to make full use of the characteristics of them. Spatial frequency in NSCT domain is input to motivate PCNN and coe±cients in NSCT domain with large firing times are selected as coe±cients of the fused image. Experimental results demonstrate that the proposed algorithm outperforms typical wavelet-based, contourlet-based, PCNN-based and contourlet-PCNN-based fusion algorithms in term of objective criteria and visual appearance.
机译:非下采样轮廓波变换(NSCT)为图像提供灵活的多分辨率,各向异性和方向扩展。与原始轮廓波变换相比,它具有平移不变性,可以克服奇点周围的伪Gibbs现象。脉冲耦合神经网络(PCNN)是视觉皮层启发的神经网络,其特征在于神经元的全局耦合和脉冲同步。它已被证明适用于图像处理,并成功应用于图像融合。在本文中,NSCT与PCNN相关联,并用于图像融合以充分利用它们的特性。输入NSCT域中的空间频率来激励PCNN,并选择发射时间较长的NSCT域中的系数作为融合图像的系数。实验结果表明,在客观标准和视觉外观方面,该算法优于典型的基于小波,基于轮廓波,基于PCNN和基于轮廓波-PCNN的融合算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号