首页> 外文OA文献 >Credit risk assessment in commercial banks based on fuzzy support vector machines
【2h】

Credit risk assessment in commercial banks based on fuzzy support vector machines

机译:基于模糊支持向量机的商业银行信用风险评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Credit risk assessment plays an important role in banks credit risk management. The objective of credit assessment is to decide credit ranks, which denote the capacity of enterprises to meet their financial commitments. Traditional "one-versusone" approach has been commonly used in the multi-classification method based on Support Vector Machine (SVM). Since SVM for pattern recognition is based on binary classification, there will be unclassifiable regions when extended to multi-classification problems. Focus on this problem, a new credit risk assessment model based on fuzzy SVM is introduced in this paper that can give a reasonable classification for unclassifiable examples. Experiment results show that the fuzzy SVM method provides a better performance in generalization ability and assessment accuracy than conventional one-versus-one multi-classification approach.
机译:信用风险评估在银行信用风险管理中起着重要作用。信用评估的目的是确定信用等级,信用等级表示企业履行其财务承诺的能力。传统的“一对一”方法已普遍用于基于支持向量机(SVM)的多分类方法中。由于用于模式识别的SVM基于二进制分类,因此当扩展到多分类问题时,将存在无法分类的区域。针对这一问题,本文提出了一种基于模糊支持向量机的信用风险评估模型,可以对无法分类的案例进行合理的分类。实验结果表明,与传统的一对多分类方法相比,模糊支持向量机方法具有更好的泛化能力和评估精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号