首页> 外文OA文献 >Effective Dose Gradients in Lung Radiotherapy: Setting Target Margins and Monitoring Dose Deviations for Image-Guided Adaptive Strategies
【2h】

Effective Dose Gradients in Lung Radiotherapy: Setting Target Margins and Monitoring Dose Deviations for Image-Guided Adaptive Strategies

机译:肺放射治疗中的有效剂量梯度:为图像引导的自适应策略设置目标余量和监测剂量偏差

摘要

Organ motion is a major source of geometric uncertainty in the delivery of external beam radiation therapy. Organ motion that occurs during the delivery of radiation therapy is referred to as intrafraction organ motion. Intrafraction motion is most predominant in the lungs due to the respiratory motion of the diaphragm and lungs. This intrafraction motion presents a substantial challenge to physicists and clinicians interested in the accurate prescription and delivery of a dose in radiation treatment.The convolution model of target motion described in this work was used to assess the impact of respiratory motion on the delivered dose distribution. This model predicts the dose distribution that will be delivered in the presence of motion by performing a mathematical convolution between the planned dose distribution and a probability distribution describing the target motion. The model was modified from its original form to include the gradient of the probability density function, which provides additional insight into the effect of target motion. The validity of the convolution model in the context of intrafraction motion was established based on an analysis of the model assumptions as well as experimental validation of the model predictions using radiochromic film measurements. It is shown that the model makes useful predictions for a wide range of regular and irregular breathing patterns. Breathing trace recordings acquired during four dimensional computed tomography scans of $502$ unique patients were used in conjunction with the convolution model to simulate the effect of target motion using MATLAB code developed in house. The motion effect on dose coverage was simulated for each breathing trace on a range of target sizes in order to establish trends which can be used to guide margin selection. The required margins were found to have a clear dependence on the standard deviation of the probability distribution describing the target motion. A method for calculating the margin required to maintain target dose coverage is presented. A table of margin recommendations for a range of breathing patterns and target sizes is presented. The effect of motion was also simulated on clinical treatment plans including a 3-field, a 4-field and a volumetric modulated arc treatment. The clinical treatment plans demonstrate the interplay between the static dose gradients seen in a clinical setting and the loss of dose coverage due to breathing motion.The validity of the technique is demonstrated for an extreme case of a small lung target undergoing large amplitude motion. This result represents the full use of the proposed methodology. The process demonstrates that using the margins recommended in this work will ensure target dose coverage, but that compromises will be made relative to the plan with unmodified margins. The target dose coverage comes at the expense of increased target volume and potentially increased dose to nearby organs at risk. An analytical approximation of lung target motion and static dose distributions using Gaussian functions is used to demonstrate the limit of the technique for small fields and the sensitivity of the model to its key parameters.
机译:器官运动是外束放射治疗中几何不确定性的主要来源。在放射治疗的输送过程中发生的器官运动被称为“小节内器官运动”。由于隔膜和肺部的呼吸运动,分数内运动在肺中最主要。这种分数运动对那些对放射治疗中的精确剂量和剂量给药感兴趣的物理学家和临床医生提出了巨大挑战。这项工作中描述的目标运动的卷积模型用于评估呼吸运动对剂量分布的影响。该模型通过在计划的剂量分布和描述目标运动的概率分布之间进行数学卷积来预测在运动存在时将要传递的剂量分布。该模型从其原始形式进行了修改,以包括概率密度函数的梯度,从而提供了对目标运动效果的更多了解。基于对模型假设的分析以及使用放射性变色膜测量值对模型预测的实验验证,确定了在内部分数运动情况下卷积模型的有效性。结果表明,该模型可以对各种规则和不规则的呼吸模式做出有用的预测。使用内部开发的MATLAB代码,在对502美元的独特患者进行了四维计算机断层扫描时获得的呼吸轨迹记录与卷积模型一起使用,以模拟目标运动的效果。在目标大小范围内,针对每个呼吸轨迹模拟了对剂量覆盖率的运动影响,以建立可用于指导余量选择的趋势。发现所需的余量明显取决于描述目标运动的概率分布的标准偏差。提出了一种用于计算维持目标剂量覆盖率所需的余量的方法。给出了一系列呼吸模式和目标尺寸的余量推荐表。还对包括3场,4场和容积调制电弧治疗在内的临床治疗计划模拟了运动的影响。临床治疗计划证明了在临床环境中看到的静态剂量梯度与由于呼吸运动而导致的剂量覆盖范围丧失之间的相互作用。该技术的有效性在小目标肺大幅度运动的极端情况下得到了证明。该结果代表了所提议方法的充分利用。该过程表明,使用这项工作中建议的裕度将确保目标剂量范围,但相对于未更改裕度的计划,将做出折衷。目标剂量的覆盖范围是以增加目标体积和可能增加对处于危险中的附近器官的剂量为代价的。使用高斯函数对肺目标运动和静态剂量分布进行分析近似,以证明该技术在小视野下的局限性以及模型对其关键参数的敏感性。

著录项

  • 作者

    Foster William Kyle;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号