首页> 外文OA文献 >Low-Leakage ESD Power Supply Clamps in General Purpose 65 nm CMOS Technology
【2h】

Low-Leakage ESD Power Supply Clamps in General Purpose 65 nm CMOS Technology

机译:通用65 nm CMOS技术的低泄漏ESD电源钳位

摘要

Electrostatic discharge (ESD) is a well-known contributor that reduces the reliability and yield of the integrated circuits (ICs). As ICs become more complex, they are increasingly susceptible to such failures due to the scaling of physical dimensions of devices and interconnect on a chip [1]. These failures are caused by excessive electric field and/or excessive current densities and result in the dielectric breakdown, electromigration of metal lines and contacts. ESD can affect the IC in its different life stages, from wafer fabrication process to failure in the field. Furthermore, ESD events can damage the integrated circuit permanently (hard failure), or cause a latent damage (soft failure) [2]. ESD protection circuits consisting of I/O protection and ESD power supply clamps are routinely used in ICs to protect them against ESD damage. The main objective of the ESD protection circuit is to provide a low-resistive discharge path between any two pins of the chip to harmlessly discharge ESD energy without damaging the sensitive circuits. The main target of this thesis is to design ESD power supply clamps that have the lowest possible leakage current without degrading the ESD protection ability in general purpose TSMC 65 nm CMOS technology. ESD clamps should have a very low-leakage current and should be stable and immune to the power supply noise under the normal operating conditions of the circuit core. Also, the ESD clamps must be able to handle high currents under an ESD event. All designs published in the general purpose 65 nm CMOS technology have used the SCR as the clamping element since the SCR has a higher current carrying capability compared to an MOS transistor of the same area [3]. The ESD power supply clamp should provide a low-resistive path in both directions to be able to deal with both PSD and NDS zapping modes. The SCR based design does not provide the best ESD protection for the NDS zapping mode (positive ESD stress at VSS with grounded VDD node) since it has two parasitic resistances (RNwell and RPsub) and one parasitic diode (the collector to base junction diode of the PNP transistor) in the path from the VSS to VDD. Furthermore, SCR-based designs are not suitable for application that exposed to hot switching or ionizing radiation [2]. In GP process, the gate oxide thickness of core transistors is reduced compared with LP process counterpart to achieve higher performance designs for high-frequency applications using 1 V core transistors and 2.5 V I/O option. The thinner gate oxide layer results in higher leakage current due to gate tunneling [4]. Therefore, using large thin oxide MOS transistors as clamping elements will result in a huge leakage. In this thesis, four power supply ESD clamps are proposed in which thick oxide MOS transistors are used as the main clamping element. Therefore, the low-leakage current feature is achieved without significantly degrading the ESD performance. In addition, the parasitic diode of the MOS transistors provides the protection against NSD-mode. In this thesis, two different ESD power supply clamp architectures are proposed: standalone ESD power supply clamps and hybrid ESD power supply clamps. Two standalone clamps are proposed: a transient PMOS based ESD clamp with thyristor delay element (PTC), and a static diode triggered power supply (DTC). The standalone clamps were designed to protect the circuit core against ±125 V CDM stress by limiting the voltage between the two power rails to less than the oxide breakdown voltage of the core transistors, BVOXESD = 5 V. The large area of this architecture was the price for maintaining the low-leakage current and an adequate ESD protection. The hybrid clamp architecture was proposed to provide a higher ESD protection, against ±300 V CDM stress, while reducing the layout area and maintaining the low-leakage feature. In the hybrid clamp structure, two clamps are connected in parallel between the two power supply rails, a static clamp, and a transient clamp. The static clamp triggers first and starts to sink the ESD energy and then an RC network triggers the primary transient clamp to sink most of the ESD stress. Two hybrid designs were proposed: PMOS ESD power supply clamp with thyristor delay element and diodes (PTDC), and NMOS ESD power supply clamp with level shifter delay element and diode (NLDC).Simulation results show that the proposed clamps are capable of protecting the circuit core against ±1.5 kV HBM and at least against ±125 V CDM stresses. The measurement results show that all of the proposed clamps are immune against false triggering, and transient induced latch-up. Furthermore, all four designs have responded favorably to the 4 V ESD-like pulse voltage under both chip powered and not powered conditions and after the stress ends the designs turned off. Finally, TLP measurement results show that all four proposed designs meet the minimum design requirement of the ESD protection circuit in the 65 nm CMOS technology (i.e. HBM protection level of ±1.5 kV ).
机译:静电放电(ESD)是降低集成电路(IC)的可靠性和良率的众所周知的因素。随着IC变得越来越复杂,由于器件的物理尺寸和芯片上互连的规模缩放,它们越来越容易遭受此类故障的影响[1]。这些故障是由过大的电场和/或过大的电流密度引起的,并导致电介质击穿,金属线和触点的电迁移。从晶圆制造工艺到现场故障,ESD会在不同的生命周期内影响IC。此外,ESD事件可能会永久损坏集成电路(硬故障),或导致潜在损坏(软故障)[2]。 IC中通常使用由I / O保护和ESD电源钳位组成的ESD保护电路,以防止ESD损坏。 ESD保护电路的主要目的是在芯片的任意两个引脚之间提供低电阻的放电路径,以无害地释放ESD能量而不会损坏敏感电路。本文的主要目标是设计一种在不降低通用TSMC 65 nm CMOS技术的ESD保护能力的情况下,尽可能降低泄漏电流的ESD电源钳位。 ESD钳位器的漏电流应非常低,并且在电路芯的正常工作条件下应稳定并且不受电源噪声的影响。另外,ESD钳位器必须能够在ESD事件下处理高电流。在通用65 nm CMOS技术中发布的所有设计都将SCR用作钳位元件,因为SCR具有比相同面积的MOS晶体管更高的载流能力[3]。 ESD电源钳位器应在两个方向上提供低电阻路径,以便能够应对PSD和NDS跳变模式。由于基于SCR的设计具有两个寄生电阻(RNwell和RPsub)和一个寄生二极管(集电极到基极结的二极管),因此无法为NDS降压模式提供最佳的ESD保护(在VSS接地且VSS接地时VSS上的正ESD应力)。从VSS到VDD的路径)。此外,基于SCR的设计不适合暴露于热开关或电离辐射的应用[2]。在GP工艺中,与LP工艺的同类产品相比,核心晶体管的栅极氧化物厚度减小了,以实现使用1 V核心晶体管和2.5 V I / O选件的高频应用的高性能设计。由于栅极隧穿[4],较薄的栅极氧化层导致较高的泄漏电流。因此,使用大的薄氧化物MOS晶体管作为钳位元件将导致巨大的泄漏。本文提出了四种电源ESD钳位电路,其中将厚氧化物MOS晶体管用作主要钳位元件。因此,可以实现低漏电流功能,而不会显着降低ESD性能。此外,MOS晶体管的寄生二极管提供了针对NSD模式的保护。本文提出了两种不同的ESD电源钳位架构:独立ESD电源钳位和混合ESD电源钳位。提出了两种独立的钳位电路:具有晶闸管延迟元件(PTC)的基于PMOS的瞬态ESD钳位电路和静态二极管触发电源(DTC)。独立钳位旨在通过将两个电源轨之间的电压限制为小于核心晶体管的氧化物击穿电压(BVOXESD = 5 V),以保护电路核心免受±125 V CDM应力的影响。这种架构的大面积在于维持低漏电流和足够的ESD保护的价格。提出了一种混合钳位架构,以提供更高的ESD保护,抵抗±300 V CDM应力,同时减小布局面积并保持低漏电特性。在混合式夹具结构中,两个夹具并联连接在两个电源导轨,一个静态夹具和一个瞬态夹具之间。静态钳位首先触发并开始吸收ESD能量,然后RC网络触发初级瞬态钳位以吸收大部分ESD应力。提出了两种混合设计:带晶闸管延迟元件和二极管的PMOS ESD电源钳位(PTDC)和带电平移位器延迟元件和二极管的NMOS ESD电源钳位(NLDC)。电路芯承受±1.5 kV HBM,至少承受±125 V CDM应力。测量结果表明,所有建议的钳位均不受误触发和瞬态感应闭锁的影响。此外,在芯片加电和不加电的情况下,所有四种设计都对类似于4 V ESD的脉冲电压具有良好的响应,并且在应力结束后,设计便关闭了。最后TLP测量结果表明,所有四个提议的设计均满足65 nm CMOS技术中ESD保护电路的最低设计要求(即HBM保护等级为±1.5 kV)。

著录项

  • 作者

    Elghazali Mahdi;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号