首页> 外文OA文献 >Using Penalized Linear Discriminant Analysis and Normalized Difference Indices Derived from Landsat 8 Images to Classify Fruit-tree Crops in the Aconcagua Valley, Chile
【2h】

Using Penalized Linear Discriminant Analysis and Normalized Difference Indices Derived from Landsat 8 Images to Classify Fruit-tree Crops in the Aconcagua Valley, Chile

机译:使用惩罚线性判别分析和Landsat 8影像得出的归一化差异指数对智利阿空加瓜谷的果树作物进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate crop type maps are critical for yield estimation and agricultural practices in modern agriculture. A new approach is proposed in this thesis to improve the crop type classification accuracy, by creating a new feature set containing new spectral indices in addition to basic bands. Two types of penalized linear discriminant analysis classifiers are adopted to do the classification, and the cross-validated classification accuracies on the two different feature sets are compared to see whether the new feature set can improve the crop identification. The result shows with new indices in the feature set the classification mean error rates were decreased substantially for both classifiers (21.6% and 25.2%). Through analyzing the coefficients retrieved from the best model, the variable importance was assessed. The coefficients are summarized by different bands and images, and the result suggest that red and shortwave infrared are the two bands highly related to the fruit-trees type identification in the study area in Aconcagua valley, Chile. Also late winter to early spring may be the best time to do crop type mapping for these crop types.
机译:准确的作物类型图对于现代农业中的产量估算和农业实践至关重要。本文提出了一种新的方法,通过创建除基本带之外还包含新光谱索引的新特征集来提高作物类型分类的准确性。采用两种类型的惩罚线性判别分析分类器进行分类,并比较两个不同特征集的交叉验证分类精度,以查看新特征集是否可以改善作物识别。结果显示,在特征集中有了新的索引,两个分类器的分类平均错误率都大大降低了(21.6%和25.2%)。通过分析从最佳模型中获得的系数,评估了变量的重要性。系数通过不同的波段和图像进行汇总,结果表明,红色和短波红外光谱是智利阿空加瓜河谷研究区果树类型识别高度相关的两个波段。同样,冬末到春初可能是针对这些作物类型进行作物类型映射的最佳时间。

著录项

  • 作者

    Liao Renfang;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号