首页> 外文OA文献 >Developing Cost-Effective Pavement Maintenance and Rehabilitation Schedules: Application of MEPDG-Based Distress Models and Key Performance Index
【2h】

Developing Cost-Effective Pavement Maintenance and Rehabilitation Schedules: Application of MEPDG-Based Distress Models and Key Performance Index

机译:制定具有成本效益的路面养护和修复时间表:基于MEPDG的遇险模型和关键绩效指标的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pavement Maintenance and Rehabilitation (M&R) are the most critical and expensive components of infrastructure asset management. Increasing traffic load, climate change and resource limitations for road maintenance accelerate pavement deterioration and eventually increase the need for future maintenance treatments. Consequently, pavement management programs are increasingly complex. The complexities are attributed to the precise assessment process of the overall pavement condition, realistic distress prediction and identification of cost-effective M&R schedules. Cost-effective road M&R practices are only possible when the evaluation of pavement condition is precise, pavement deterioration models are accurate, and resources must also be available at the right time. In a Pavement Management System (PMS), feasible M&R treatments are identified at the end of each branch of the decision trees. The decision trees are based on empirical relationships of the pavement performance index. Moreover, the predicted improvements in pavement performance for any treatment are set based on engineering experiences. Furthermore, the remaining service life of the pavement is estimated from the predicted deterioration of the overall condition. The future deterioration of the overall condition is estimated based on the initial condition and by considering only the effect of age notwithstanding the effect of traffic or materials. In assessing the overall condition of the pavement, this research overcomes the limitations of engineering judgment by incorporating a Mechanistic-Empirical (M-E) approach and estimating the improvement in performance for specific treatment types. It also considers the effect of traffic and materials on pavement performance to precisely predict its future deterioration and subsequent remaining service life.The objective of this research is to develop cost-effective pavement M&R schedules by incorporating (a) the M-E approach into the overall condition index and (b) the estimate of performance indices by considering the factors affecting pavement performance. The research objective will be accomplished by (i) incorporating variability analysis of existing performance evaluation practices and maintenance decisions of pavement, (ii) investigating estimates of existing performance indices, (iii) incorporating the M-E approach: sensitivity analysis, prediction, comparison and verification, (iv) estimating the deterioration model based on traffic characteristics and material types, and (v) identifying cost-effective M&R treatment options through Life Cycle Cost Analysis (LCCA). This study uses the pavement performance data of Ontario highways recorded in the Ministry of Transportation (MTO) pavement database.Precise assessment of pavement condition is a significant part in achieving the research goal. In a PMS, an accurate location reference system is necessary for managing pavement evaluations and maintenance. The length of the pavement section selected for evaluation may have a significant impact on the assessment irrespective of the type of performance indices. In Ontario, the highway section lengths range from 50m to 50,000m. For this reason, a variability in performance evaluation is investigated due to changes in section length. This study considers rut depth, Pavement Condition Index (PCI), and International Roughness Index (IRI) as performance indices. The distributions of these indices are compared by the following groupings of section lengths: 50m, 500m, 1,000m and 10,000m. The variations of performance assessments due to changing section lengths are investigated based on their impact on maintenance decisions. A Monte Carlo simulation is carried out by varying section lengths to estimate probabilities of maintenance work requirements. Results of such empirical investigations reveal that most of the longer sections are evaluated with low rut depth and the shorter sections are evaluated with high rut depth. This Monte Carlo simulation also reveals that 50m sections have a higher probability of maintenance requirements than 500m sections. The method of estimating performance indices is also investigated to identify the requirement of improvement in estimation of the prediction models. Generally, in a PMS, the prediction models of Key Performance Indicators (KPIs) are estimated by using the Ordinary Least Square (OLS) approach. However, the OLS approach can be inefficient if unobserved factors influencing individual KPIs are correlated with each other. For this reason, regression models for KPI predictions are estimated by using an approach called the ‘Seemingly Unrelated Regression (SUR)' method. The M-E approach is used in this study to predict the future distresses by employing mechanistic-empirical models to analyze the impact of traffic, climate, materials and pavement structure. The Mechanistic-Empirical Pavement Design Guide (MEPDG) software uses a three-level hierarchical input to predict performance in terms of IRI, permanent deformation (rut depth), total cracking (reflective and alligator), asphalt concrete (AC) thermal fracture, AC bottom-up fatigue cracking and AC top-down fatigue cracking. However, these inputs have different levels of accuracy, which may have a significant impact on performance prediction. It would be ineffective to put effort for obtaining accuracy at Level 1 for all inputs. For this reason, a sensitivity analysis is carried out based on an experimental design to identify the effect of the accuracy level of inputs on the distresses. Following this, a local sensitivity analysis is carried out to identify the main effect of input variables. Interaction effects are also analyzed based on a random combination of the inputs. Since the deterioration of pavement is affected by site-specific traffic, local climate and properties of materials, these variables are carefully considered during the development of the pavement deterioration model to assess overall pavement conditions. The prediction model is developed by using a regression approach considering distresses of the M-E approach. In this study, the deterioration model is estimated for three groups of Annual Average Daily Traffic (AADT) to recognize their individual impact along with properties of materials. The time required for maintenance is also estimated for these categories. The investigations reveal that the expected time to maintenance for overlay with Dense Friction Course (DFC) and Superpave mixes is higher than other Hot Laid (HL) asphalt layers. This will help pavement designers and managers to make informed decisions. The probability of failure is also investigated by a probabilistic approach. With the increasing trend towards M&R of existing pavements, it is essential to make cost-effective use of the M&R budget. As such, identification of associated cost-effective M&R treatments is not always simple in most PMS. For this reason, a LCCA is carried out for alternate pavement treatments using the deterioration model based on traffic levels and material types. Comparing the Net Present Worth (NPW) value of alternative treatment options reveals that the overlay of pavement with DFC is the most cost-effective choice in the case of higher AADT. On the other hand, overlay with Hot Laid-1 (HL-1) is a cost-effective treatment option for highway sections with lower AADT. Although the results are related to the Ontario highway system, this can also be applied elsewhere with similar conditions. The outcome of the empirical investigations will result in the adoption of efficient road M&R programs for highways based on realistic performance predictions, which have significant impact on infrastructure asset management.
机译:路面维护和修复(M&R)是基础设施资产管理中最关键和最昂贵的组件。日益增加的交通负荷,气候变化和道路维护的资源限制会加速人行道的恶化,并最终增加对未来维护处理的需求。因此,路面管理程序越来越复杂。复杂性归因于整个路面状况的精确评估过程,切合实际的事故预测以及确定具有成本效益的M&R计划。只有在对路面状况进行精确评估,对路面劣化模型进行精确评估并且还必须在适当的时间提供资源的情况下,才能实现具有成本效益的道路维修与保养实践。在路面管理系统(PMS)中,在决策树每个分支的末尾确定可行的M&R处理。决策树基于路面性能指标的经验关系。此外,根据工程经验确定对任何处理的预期路面性能改善。此外,路面的剩余使用寿命是根据整体状况的预计恶化来估算的。尽管交通或物资的影响,总体条件的未来恶化是基于初始条件并仅考虑年龄的影响来估计的。在评估人行道的整体状况时,本研究通过采用机械-经验(M-E)方法并评估特定处理类型的性能改善,克服了工程判断的局限性。它还考虑了交通和材料对路面性能的影响,以准确预测其未来的劣化和随后的剩余使用寿命。本研究的目的是通过将(a)ME方法纳入整体状况来制定具有成本效益的路面M&R计划(b)通过考虑影响路面性能的因素来估算性能指标。通过(i)结合现有性能评估实践和路面养护决策的可变性分析,(ii)研究现有性能指标的估计,(iii)结合ME方法:敏感性分析,预测,比较和验证,可以实现研究目标。 ;(iv)根据交通特征和材料类型估算恶化模型,以及(v)通过生命周期成本分析(LCCA)找出具有成本效益的M&R处理方案。本研究使用交通运输部(MTO)路面数据库中记录的安大略省高速公路的路面性能数据。精确评估路面状况是实现研究目标的重要组成部分。在PMS中,需要精确的位置参考系统来管理路面评估和维护。无论性能指标的类型如何,选择进行评估的人行道的长度可能会对评估产生重大影响。在安大略省,高速公路路段的长度在50m至50,000m之间。因此,由于截面长度的变化,研究了性能评估的可变性。本研究将车辙深度,路面状况指数(PCI)和国际粗糙度指数(IRI)视为性能指标。这些指数的分布通过以下区域长度分组进行比较:50m,500m,1,000m和10,000m。根据截面长度的变化,对性能评估的变化进行了调查,基于其对维护决策的影响。通过改变截面长度来进行蒙特卡洛模拟,以估计维护工作要求的概率。这些经验研究的结果表明,大多数较长的部分以低车辙深度进行评估,而较短的部分以高车辙深度进行评估。蒙特卡洛模拟还显示,与500m剖面相比,50m剖面具有更高的维护要求概率。还研究了估计性能指标的方法,以确定改进预测模型估计的需求。通常,在PMS中,关键绩效指标(KPI)的预测模型是使用普通最小二乘(OLS)方法估算的。但是,如果影响单个KPI的未观察因素相互关联,则OLS方法可能效率不高。因此,使用称为“看似无关的回归(SUR)”的方法来估算KPI预测的回归模型。本研究中采用M-E方法,通过采用机械经验模型来分析交通,气候的影响来预测未来的困境。,材料和路面结构。 《机械-经验路面设计指南》(MEPDG)软件使用三级分层输入来预测IRI,永久变形(车辙深度),总开裂(反射和鳄鱼皮),沥青混凝土(AC)热断裂,AC的性能自下而上的疲劳裂纹和AC自上而下的疲劳裂纹。但是,这些输入具有不同级别的准确性,这可能会对性能预测产生重大影响。付出努力以使所有输入的精度达到1级将是无效的。因此,基于实验设计进行了敏感性分析,以确定输入准确度水平对遇险的影响。然后,进行局部敏感性分析以识别输入变量的主要作用。还基于输入的随机组合来分析交互作用。由于路面的恶化受特定地点的交通,当地气候和材料特性的影响,因此在开发路面恶化模型以评估整体路面状况时,应仔细考虑这些变量。通过使用考虑了M-E方法困境的回归方法来开发预测模型。在本研究中,估计了三组年平均每日交通量(AADT)的恶化模型,以识别其各自的影响以及材料的性能。这些类别的维护时间也被估算。调查显示,密实摩擦层(DFC)和Superpave混合料的覆盖预期维修时间比其他热敷(HL)沥青层高。这将有助于路面设计人员和管理人员做出明智的决定。还通过概率方法研究了故障的可能性。随着现有路面的M&R趋势越来越大,必须以经济有效的方式使用M&R预算。因此,在大多数PMS中,确定相关的具有成本效益的M&R处理方法并不总是那么简单。因此,使用基于交通量和材料类型的劣化模型对备用路面进行LCCA。比较替代处理方案的净现值(NPW)值可以发现,在较高AADT的情况下,用DFC覆盖铺面是最具成本效益的选择。另一方面,对于AADT较低的高速公路路段,采用热敷1(HL-1)覆盖是一种经济有效的处理选择。尽管结果与安大略省高速公路系统有关,但也可以将其应用于条件类似的其他地方。实证研究的结果将导致基于现实的性能预测,对高速公路采用有效的道路M&R计划,这对基础设施资产管理具有重大影响。

著录项

  • 作者

    Jannat Gulfam;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号