首页> 外文OA文献 >Physics Based Virtual Source Compact Model of Gallium-Nitride High Electron Mobility Transistors
【2h】

Physics Based Virtual Source Compact Model of Gallium-Nitride High Electron Mobility Transistors

机译:氮化镓高电子迁移率晶体管基于物理的虚拟源紧凑模型

摘要

Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) outperform Gallium Arsenide (GaAs) and silicon based transistors for radio frequency (RF) applications in terms of output power and efficiency due to its large bandgap (~3.4 eV@300 K) and high carrier mobility property (1500 – 2300 cm^2/(V⋅s)). These advantages have made GaN technology a promising candidate for future high-power microwave and potential millimeter-wave applications. Current GaN HEMT models used by the industry, such as Angelov Model, EEHEMT Model and DynaFET (Dynamic FET) model, are empirical or semi-empirical. Lacking the physical description of the device operations, these empirical models are not directly scalable. Circuit design that uses the models requires multiple iterations between the device and circuit levels, becoming a lengthy and expensive process. Conversely existing physics based models, such as surface potential model, are computationally intensive and thus impractical for full scale circuit simulation and optimization. To enable efficient GaN-based RF circuit design, computationally efficient physics based compact models are required.In this thesis, a physics based Virtual Source (VS) compact model is developed for GaN HEMTs targeting RF applications. While the intrinsic current and charge model are developed based on the Virtual Source model originally proposed by MIT researchers, the gate current model and parasitic element network are proposed based on our applications with a new efficient parameter extraction flow. Both direct current (DC) of drain and gate currents and RF measurements are conducted for model parameter extractions. The new flow first extracts device parasitic resistive values based on the DC measurement of gate current. Then parameters related with the intrinsic region are determined based on the transport characteristics in the subthreshold and above threshold regimes. Finally, the parasitic resistance, capacitance and inductance values are optimized based on the S-parameter measurement. This new extraction flow provides reliable and accurate extraction for parasitic element values while achieving reasonable resolutions holistically with both DC and RF characteristics. The model is validated against measurement data in terms of drain current, gate current and scattering parameter (S-parameter).This model provides simple yet clear physical description for GaN HEMTs with only a short list of model parameters compared with other empirical or physics based models. It can be easily integrated in circuit simulators for RF circuit design.
机译:基于氮化镓(GaN)的高电子迁移率晶体管(HEMT)具有很高的带隙(〜3.4 eV @ 300 K),在输出功率和效率方面都优于砷化镓(GaAs)和基于硅的晶体管,适用于射频(RF)应用。和高载流子迁移率特性(1500 – 2300 cm ^ 2 /(V⋅s))。这些优势使GaN技术成为未来大功率微波和潜在毫米波应用的有希望的候选者。行业中使用的当前GaN HEMT模型(例如Angelov模型,EEHEMT模型和DynaFET(动态FET)模型)是经验的或半经验的。由于缺乏对设备操作的物理描述,因此这些经验模型无法直接扩展。使用模型的电路设计需要在器件和电路级之间进行多次迭代,这是一个漫长而昂贵的过程。相反,现有的基于物理的模型(例如表面电势模型)需要大量计算,因此对于全面的电路仿真和优化不切实际。为了实现高效的基于GaN的RF电路设计,需要基于计算效率的基于物理的紧凑模型。本文针对面向RF应用的GaN HEMT,开发了基于物理的虚拟源(VS)紧凑模型。在基于MIT研究人员最初提出的虚拟源模型开发本征电流和电荷模型的同时,根据我们的应用提出了一种新型的有效参数提取流程,提出了栅极电流模型和寄生元件网络。进行漏极和栅极电流的直流(DC)和RF测量,以提取模型参数。新流程首先根据栅极电流的直流测量值提取器件寄生电阻值。然后,根据低于阈值和高于阈值范围的传输特性,确定与本征区域相关的参数。最后,基于S参数测量来优化寄生电阻,电容和电感值。这种新的提取流程为寄生元件值提供了可靠而准确的提取,同时在直流和射频特性方面实现了合理的分辨率。该模型针对漏极电流,栅极电流和散射参数(S参数)的测量数据进行了验证,该模型提供了GaN HEMT的简单而清晰的物理描述,与其他基于经验或物理学的模型相比,仅列出了简短的模型参数楷模。它可以轻松集成到电路仿真器中,以进行RF电路设计。

著录项

  • 作者

    Zhang Hao;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号