首页> 外文OA文献 >3D optical metrology by digital moiré: Pixel-wise calibration refinement, grid removal, and temporal phase unwrapping
【2h】

3D optical metrology by digital moiré: Pixel-wise calibration refinement, grid removal, and temporal phase unwrapping

机译:数字莫尔条纹的3D光学计量:逐像素校准,网格去除和时间相位展开

摘要

Fast, accurate three dimensional (3D) optical metrology has diverse applications in object and environment modelling. Structured-lighting techniques allow non-contacting 3D surface-shape measurement by projecting patterns of light onto an object surface, capturing images of the deformed patterns, and computing the 3D surface geometry from the captured 2D images. However, motion artifacts can still be a problem with high-speed surface-motion especially with increasing demand for higher measurement resolution and accuracy. To avoid motion artifacts, fast 2D image acquisition of projected patterns is required. Fast multi-pattern projection and minimization of the number of projected patterns are two approaches for dynamic object measurement. To achieve a higher rate of switching frames, fast multi-pattern projection techniques require costly projector hardware modification or new designs of projection systems to increase the projection rate beyond the capabilities of off-the-shelf projectors. Even if these disadvantages were acceptable (higher cost, complex hardware), and even if the rate of acquisition achievable with current systems were fast enough to avoid errors, minimization of the number of captured frames required will still contribute to reduce further the effect of object motion on measurement accuracy and to enable capture of higher object dynamics. Development of an optical 3D metrology method that minimizes the number of projected patterns while maintaining accurate 3D surface-shape measurement of objects with continuous and discontinuous surface geometry has remained a challenge. Capture of a single image-frame instead of multiple frames would be advantageous for measuring moving or deforming objects. Since accurate measurement generally requires multiple phase-shifted images, imbedding multiple patterns into a single projected composite pattern is one approach to achieve accurate single-frame 3D surface-shape measurement. The main limitations of existing single-frame methods based on composite patterns are poor resolution, small range of gray-level intensity due to collection of multiple patterns in one image, and degradation of the extracted patterns because of modulation and demodulation processes on the captured composite pattern image. To benefit from the advantages of multi-pattern projection of phase-shifted fringes and single-frame techniques, without combining phase-shifted patterns into one frame, digital moiré was used. Moiré patterns are generated by projecting a grid pattern onto the object, capturing a single frame, and in a post-process, superimposing a synthetic grid of the same frequency as in the captured image. Phase-shifting is carried out as a post-process by digitally shifting the synthetic grid across the captured image. The useful moiré patterns, which contain object shape information, are contaminated with a high-frequency grid lines that must be removed. After performing grid removal, computation of a phase map, and phase-to-height mapping, 3D object shape can be computed. The advantage of digital moiré provides an opportunity to decrease the number of projected patterns. However, in previous attempts to apply digital phase-shifting moiré to perform 3D surface-shape measurement, there have been significant limitations.To address the limitation of previous system-calibration techniques based on direct measurement of optical-setup parameters, a moiré-wavelength based phase-to-height mapping system-calibration method was developed. The moiré-wavelength refinement performs pixel-wise computation of the moiré wavelength based on the measured height (depth). In measurement of a flat plate at different depths, the range of root-mean-square (RMS) error was reduced from 0.334 to 0.828 mm using a single global wavelength across all pixels, to 0.204 to 0.261 mm using the new pixel-wise moiré-wavelength refinement.To address the limitations of previous grid removal techniques (precise mechanical grid translation, multiple-frame capture, moiré-pattern blurring, and measurement artifacts), a new grid removal technique was developed for single-frame digital moiré using combined stationary wavelet and Fourier transforms (SWT-FFT). This approach removes high frequency grid both straight and curved lines, without moiré-pattern artifacts, blurring, and degradation, and was an improvement compared to previous techniques.To address the limitations of the high number of projected patterns and captured images of temporal phase unwrapping (TPU) in fringe projection, and the low signal-to-noise ratio of the extended phase map of TPU in digital moiré, improved methods using two-image and three-image TPU in digital phase-shifting moiré were developed. For measurement of a pair of hemispherical objects with true radii 50.80 mm by two-image TPU digital moiré, least-squares fitted spheres to the measured 3D point clouds had errors of 0.03 mm and 0.06 mm, respectively (sphere fitting standard deviations 0.15 mm and 0.14 mm), and the centre-to-centre distance measurement between hemispheres had an error of 0.19 mm. The number of captured images required by this new method is one third that for three-wavelength heterodyne temporal phase unwrapping by fringe projection techniques, which would be advantageous in measuring dynamic objects, either moving or deforming.
机译:快速,准确的三维(3D)光学度量在对象和环境建模中具有多种应用。结构化照明技术通过将光的图案投影到物体表面,捕获变形图案的图像并从捕获的2D图像计算3D表面几何形状,从而实现非接触式3D表面形状测量。但是,运动伪影仍然可能是高速表面运动的问题,尤其是对更高的测量分辨率和精度的需求不断增加时。为了避免运动伪影,需要快速获取投影图案的2D图像。快速的多图案投影和最小化投影图案的数量是动态对象测量的两种方法。为了获得更高的切换帧率,快速的多模式投影技术需要对投影仪硬件进行昂贵的修改或对投影系统进行新设计,以将投影速率提高到超过现成投影仪的能力。即使这些缺点是可以接受的(较高的成本,复杂的硬件),并且即使当前系统可达到的采集速度足以避免错误,但所需捕获帧数的最小化仍将有助于进一步降低物体的影响。可以提高测量精度,并可以捕获更高的物体动态。光学3D计量方法的发展一直是一个挑战,该方法在保持对具有连续和不连续表面几何形状的对象的精确3D表面形状测量的同时,最小化投影图案的数量。捕获单个图像帧而不是多个帧对于测量运动或变形的对象将是有利的。由于准确的测量通常需要多个相移图像,因此将多个图案嵌入到单个投影的合成图案中是实现精确的单帧3D表面形状测量的一种方法。现有的基于合成图案的单帧方法的主要局限性在于分辨率差,由于在一幅图像中收集了多个图案而导致的灰度级强度范围小以及由于对捕获的合成物进行调制和解调过程而导致提取的图案退化图案图片。为了受益于相移条纹的多模式投影和单帧技术的优势,而无需将相移模式组合为一帧,因此使用了数字莫尔条纹。通过将网格图案投影到对象上,捕获单个帧,然后在后期处理中,叠加与捕获图像中相同频率的合成网格,即可生成莫尔图案。相移作为后期处理,通过在捕获的图像上数字移动合成网格进行。包含对象形状信息的有用的莫尔条纹图案被必须去除的高频网格线污染。在执行网格移除,相图计算和相高映射之后,可以计算3D对象形状。数字云纹的优势为减少投影图案的数量提供了机会。然而,在先前尝试将数字相移莫尔条纹用于执行3D表面形状测量的过程中,存在重大局限性。为了解决先前基于直接测量光学设置参数,莫尔条纹波长的系统校准技术的局限性提出了一种基于相位-高度映射系统的标定方法。云纹波长细化基于测得的高度(深度)对云纹波长进行像素级计算。在测量不同深度的平板时,均方根(RMS)误差的范围从使用所有像素的单一全局波长的0.334减小到0.828 mm,使用新的逐像素莫尔条纹减小到0.204到0.261 mm波长细化:为解决以前的网格去除技术的局限性(精确的机械网格平移,多帧捕获,莫尔条纹模糊和测量伪影),针对单帧数字莫尔条纹开发了一种新的网格去除技术,使用了组合式固定小波和傅立叶变换(SWT-FFT)。该方法去除了直线和曲线上的高频网格,而没有波纹图案伪影,模糊和退化,并且与以前的技术相比是一种改进。为解决大量投影图案和捕获的时间相位展开图像的局限性(TPU)的条纹投影,以及数字莫尔条纹中TPU扩展相位图的低信噪比,开发了在数字相移莫尔条纹中使用两图像和三图像TPU的改进方法。对于通过两幅图像TPU数字波纹测量的真实半径为50.80 mm的一对半球物体,最小二乘拟合球体与测量的3D点云的误差为0.03 mm和0.06 mm,分别(球体拟合标准偏差0.15毫米和0.14毫米),半球之间的中心距测量值的误差为0.19毫米。这种新方法所需的捕获图像数量是通过条纹投影技术展开的三波长外差时间相位展开的三分之一,这将有利于测量运动或变形的动态对象。

著录项

  • 作者

    Mohammadi Fatemeh;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号