首页> 外文OA文献 >Soil Oxygen Monitoring with Fibre Optode Sensors: Experimental Evaluation in Soil Columns under Fluctuating Water Table and Freeze Thaw Conditions
【2h】

Soil Oxygen Monitoring with Fibre Optode Sensors: Experimental Evaluation in Soil Columns under Fluctuating Water Table and Freeze Thaw Conditions

机译:光纤传感器监测土壤中的氧气:在地下水位波动和冻融条件下土壤柱中的实验评估

摘要

The biogeochemical functioning of natural and engineered environments is closely linked to spatial and temporal variations in molecular oxygen (O2) concentrations. A luminescence-based, Multi-Fibre Optode (MuFO) microsensor technique was developed to measure O2 concentrations in fully and partially water-saturated systems. The technique relies on the conversion of high-resolution digital images of sensor-emitted light into O2 concentrations using the classical Stern-Volmer (SV) and Lehrer equations. The method was tested in two soil column experiments designed to simulate water table fluctuations (WT) and freeze-thaw cycles (FTC) under controlled conditions. The columns were filled with a homogenized mixture of peat (20 %) and sand (80 %). Depth distributions of O2 concentration were monitored without interruption for 20 (WT experiment) and 39 days (FTC experiment), while CO2 effluxes from the soils were measured periodically. Increases in CO2 emission accompanied both thawing (FTC experiment) and water table drawdown (WT experiment). During freezing, O2 levels in the unsaturated depth interval of the soil dropped by up to 20% because of more restricted gas exchanges with the atmosphere. The CO2 pulses in the FTC experiment were therefore attributed to the build-up of respiratory CO2 in the pore space during freezing, and its subsequent release upon thawing. In the WT experiment, the lowering (rate of 12 cm day-1 over 2.5 days) of the water table allowed for O2 migration deeper into the soil, which enhanced the aerobic mineralization of peat organic matter and, consequently, increased the emission of CO2. In both the FTC and WT experiments, the magnitude of the CO2 pulse decreased (from 0.26 μmol2 s-1 to 0.07 μmol2 s-1) with each subsequent water table and freeze-thaw cycle, indicating the progressive depletion of reactive organic carbon. No degradation of optode performance and O2 signals were observed over the entire duration of the experiments, hence supporting the long-term deployment of the microsensors for continuous O2 monitoring in field and laboratory settings.
机译:自然和工程环境的生物地球化学功能与分子氧(O2)浓度的时空变化密切相关。开发了一种基于发光的多光纤光电二极管(MuFO)微传感器技术,以测量完全和部分水饱和系统中的O2浓度。该技术依靠使用经典Stern-Volmer(SV)和Lehrer方程将传感器发射的光的高分辨率数字图像转换为O2浓度。该方法在两个土壤柱实验中进行了测试,旨在模拟可控条件下的地下水位波动(WT)和冻融循环(FTC)。在柱子中填充泥炭(20%)和沙子(80%)的均质混合物。连续20天(WT实验)和39天(FTC实验)监测O2浓度的深度分布,同时定期测量土壤中的CO2外排量。随着融化(FTC实验)和地下水位下降(WT实验),CO2排放量增加。在冻结过程中,由于与大气的气体交换受到更多限制,土壤非饱和深度区间中的O2含量下降了20%。因此,FTC实验中的CO2脉冲归因于冻结过程中孔隙空间中呼吸性CO2的积累,以及融化后其释放。在WT试验中,地下水位的降低(2.5天内的12 cm day-1的速率)使O2可以更深地迁移到土壤中,这增强了泥炭有机质的需氧矿化作用,因此增加了CO2的排放。在FTC和WT实验中,随着随后的每个地下水位和冻融循环,CO2脉冲的幅度都降低(从0.26μmol2s-1降至0.07μmol2s-1),表明反应性有机碳逐渐消耗。在整个实验过程中均未观察到光电二极管性能和O2信号的下降,因此支持了微传感器的长期部署,可在野外和实验室环境中进行连续的O2监测。

著录项

  • 作者

    Milojevic Tatjana;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号