首页> 外文OA文献 >Si Waveguide Technology for High Performance Millimeter-Wave/Terahertz Integrated Systems
【2h】

Si Waveguide Technology for High Performance Millimeter-Wave/Terahertz Integrated Systems

机译:用于高性能毫米波/太赫兹集成系统的Si波导技术

摘要

The terahertz (THZ) spectrum (0.3 – 3 THz) offers new opportunities to a wide range of emerging applications which demand high-quality THz sources, detectors, amplifiers, and integrated circuits. On-chip integration of planar transmission line passive components degrades their performance due to the conduction loss. Therefore, a hybrid integrated technology in which all of the high-quality passive components are implemented using a suitable off-chip planar integrated technology and the active devices are placed on-chip, has become the most promising approach.In this thesis, a low-cost and low-loss silicon-on-glass (SOG) integrated circuit technology is proposed for THz/millimeter-wave (mmW) applications. Highly-resistive intrinsic silicon (Si) is selected as the main guiding region due to its high transparency at mmW/THz frequency ranges and the maturity of Si-devices fabrication. In the proposed technology, all of the passive components and waveguide connections are made of highly-resistive Si on a glass substrate. The proposed technique leads to a high-precision and low-cost fabrication process, wherein the alignment between the sub-structures is automatically achieved during the fabrication process. This is performed by photolithography and dry etching of the entire integrated passive circuit layout through the Si layer of the SOG wafer. The SOG dielectric ridge waveguide, as the basic component of the SOG integrated circuit, is theoretically and experimentally investigated. A test setup is designed to measure propagation characteristics of the proposed SOG waveguide. Measured dispersion diagrams of the SOG dielectric waveguides show average attenuation constants of 0.63 dB/cm, 0.28 dB/cm, and 0.53 dB/cm over the frequency ranges of 55 – 65 GHz, 90 – 110 GHz, and 140 – 170 GHz, respectively.Extending the SOG platform toward the THz range is achieved by new SOG waveguide structures wherein the glass substrates below the Si channels are etched to reduce the effect of greater glass material loss at higher frequencies (i.e., > 200 GHz). To fabricate these structures, the glass substrate is etched in hydrophilic acid before bonding to the Si. Four new SOG configurations, called the suspended SOG, corrugated SOG, rib SOG, and U-SOG waveguides are proposed with their respective fabrication techniques for the THz range of frequencies. In the suspended SOG waveguide, a periodic configuration of Si beams supports the Si guiding channel over the etched grove on the glass substrate. Measurements of two suspended SOG waveguides show low attenuation constants of 0.031 dB/λ0 and 0.042 dB/λ0 (on average) over the frequency ranges of 350 - 500 GHz and 400 - 500 GHz, respectively. It is theoretically demonstrated that the rib SOG and U-SOG waveguides are promising candidates for THz high-density and low-loss integrated circuits. Rib SOG waveguide and U-SOG waveguide test devices are designed over the frequency bands of 0.8 – 0.9 THz and 0.9 – 1.1 THz. The proposed SOG waveguide technology can easily be extended to several THz with no limitations.A new mmW low-loss dielectric phase shifter integrated in the corrugated SOG platform is designed, fabricated, and measured. Phase shifts of 111 ° and 129 ° at frequencies of 85 GHz and 100 GHz, with maximum insertion losses of 0.65 dB and 2.5 dB, are achieved during measurements of the proposed phase shifter. Millimeter-wave integrated SOG tapered antennas are developed and implemented. The idea of a suspended SOG tapered antenna is demonstrated to enhance the radiation efficiency and the gain of the SOG tapered antenna over 110 – 130 GHz. The suspended SOG tapered antenna, which can function under two orthogonal mode excitations, shows measured efficiencies of higher than 90 % for the two vertical polarizations.
机译:太赫兹(THZ)频谱(0.3 – 3 THz)为需要高质量THz源,检测器,放大器和集成电路的各种新兴应用提供了新的机遇。由于传导损耗,平面传输线无源元件的片上集成会降低其性能。因此,采用适当的片外平面集成技术实现所有高质量无源元件并将有源器件放置在芯片上的混合集成技术已成为最有前途的方法。低成本和低损耗的玻璃上硅(SOG)集成电路技术被提出用于THz /毫米波(mmW)应用。由于高电阻本征硅(Si)在mmW / THz频率范围内具有很高的透明度以及硅器件制造的成熟度,因此被选作主要的引导区域。在所提出的技术中,所有无源部件和波导连接均由高电阻Si在玻璃基板上制成。所提出的技术导致高精度和低成本的制造过程,其中,在制造过程中自动实现子结构之间的对准。这是通过光刻和通过SOG晶片的Si层对整个集成无源电路布局进行干法蚀刻来执行的。 SOG介质脊形波导作为SOG集成电路的基本组成部分,在理论上和实验上都得到了研究。设计了一个测试装置来测量所提出的SOG波导的传播特性。 SOG介质波导的实测色散图显示在55 – 65 GHz,90 – 110 GHz和140 – 170 GHz频率范围内,平均衰减常数分别为0.63 dB / cm,0.28 dB / cm和0.53 dB / cm通过新的SOG波导结构将SOG平台扩展到THz范围,其中蚀刻了Si通道下方的玻璃基板,以减少较高频率(即> 200 GHz)下更大的玻璃材料损耗的影响。为了制造这些结构,在与硅键合之前,先在亲水性酸中蚀刻玻璃基板。提出了四种新的SOG配置,分别称为悬吊式SOG,波纹状SOG,肋状SOG和U-SOG波导,并分别针对THz频率范围提供了制造技术。在悬置的SOG波导中,硅光束的周期性配置在玻璃基板上经过蚀刻的凹槽上方支撑着硅引导通道。两个悬挂式SOG波导的测量结果显示,在350-500 GHz和400-500 GHz的频率范围内,衰减常数很低,分别为0.031 dB /λ0和0.042 dB /λ0(平均)。理论上证明,肋式SOG和U-SOG波导是THz高密度和低损耗集成电路的有希望的候选者。肋骨SOG波导和U-SOG波导测试设备设计用于0.8 – 0.9 THz和0.9 – 1.1 THz的频带。所提出的SOG波导技术可以很容易地扩展到几个THz而没有任何限制。设计,制造和测量了集成在波纹状SOG平台中的新型mmW低损耗介电移相器。在建议的移相器的测量过程中,在85 GHz和100 GHz的频率下,相移为111°和129°,最大插入损耗为0.65 dB和2.5 dB。开发并实现了毫米波集成式SOG锥形天线。悬挂式SOG锥形天线的想法被证明可以提高110 – 130 GHz范围内的辐射效率和SOG锥形天线的增益。悬挂的SOG锥形天线可以在两个正交模式的激励下工作,对于两个垂直极化,其测得的效率均高于90%。

著录项

  • 作者

    Ranjkesh Nazy;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号