首页> 外文OA文献 >Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering Infrastructure
【2h】

Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering Infrastructure

机译:一种新型的智能计量基础设施分集合汇传输控制协议的设计与分析

摘要

Utility companies (electricity, gas, and water suppliers), governments, andresearchers recognize an urgent need to deploy communication-based systems toautomate data collection from smart meters and sensors, known as Smart MeteringInfrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering systemis envisaged to bring tremendous benefits to customers, utilities, andgovernments. The advantages include reducing peak demand for energy, supportingthe time-of-use concept for billing, enabling customers to make informeddecisions, and performing effective load management, to name a few.A key element in an SMI is communications between meters and utility servers.However, the mass deployment of metering devices in the grid calls for studyingthe scalability of communication protocols. SMI is characterized by thedeployment of a large number of small Internet Protocol (IP) devices sendingsmall packets at a low rate to a central server. Although the individualdevices generate data at a low rate, the collective traffic produced issignificant and is disruptive to network communication functionality. Thisresearch work focuses on the scalability of the transport layerfunctionalities. The TCP congestion control mechanism, in particular, would beineffective for the traffic of smart meters because a large volume of datacomes from a large number of individual sources. This situation makes the TCPcongestion control mechanism unable to lower the transmission rate even whencongestion occurs. The consequences are a high loss rate for metered data anddegraded throughput for competing traffic in the smart metering network.To enhance the performance of TCP in a smart metering infrastructure (SMI), weintroduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP).This scheme is based on the idea of upgrading intermediate devices in SMI(known in the industry as regional collectors) to offer the service ofaggregating the TCP connections. An SA-TCP aggregator collects data packetsfrom the smart meters of its region over separate TCP connections; then itreliably forwards the data over another TCP connection to the utility server.The proposed split and aggregated scheme provides a better response to trafficconditions and, most importantly, makes the TCP congestion control and flowcontrol mechanisms effective. Supported by extensive ns-2 simulations, we showthe effectiveness of the SA-TCP approach to mitigating the problems in terms ofthe throughput and packet loss rate performance metrics.A full mathematical model of SA-TCP is provided. The model is highly accurateand flexible in predicting the behaviour of the two stages, separately andcombined, of the SA-TCP scheme in terms of throughput, packet loss rate andend-to-end delay. Considering the two stages of the scheme, the modellingapproach uses Markovian models to represent smart meters in the first stage andSA-TCP aggregators in the second. Then, the approach studies the interaction ofsmart meters and SA-TCP aggregators with the network by means of standardqueuing models. The ns-2 simulations validate the math model results.A comprehensive performance analysis of the SA-TCP scheme is performed. Itstudies the impact of varying various parameters on the scheme, including theimpact of network link capacity, buffering capacity of those RCs that act asSA-TCP aggregators, propagation delay between the meters and the utilityserver, and finally, the number of SA-TCP aggregators. The performance resultsshow that adjusting those parameters makes it possible to further enhancecongestion control in SMI. Therefore, this thesis also formulates anoptimization model to achieve better TCP performance and ensures satisfactoryperformance results, such as a minimal loss rate and acceptable end-to-enddelay. The optimization model also considers minimizing the SA-TCP schemedeployment cost by balancing the number of SA-TCP aggregators and the linkbandwidth, while still satisfying performance requirements.
机译:公用事业公司(电力,天然气和水的供应商),政府和研究人员意识到迫切需要部署基于通信的系统,以自动从智能电表和传感器(称为智能电表基础设施(SMI)或自动抄表(AMR))收集数据。设想了一种智能计量系统,可以为客户,公用事业和政府带来巨大利益。优点包括减少能源的峰值需求,支持计费的使用时间概念,使客户能够做出明智的决定以及执行有效的负载管理(仅举几例)。SMI中的关键要素是电表与公用服务器之间的通信。但是,网格中计量设备的大规模部署要求研究通信协议的可伸缩性。 SMI的特点是部署了大量的小型Internet协议(IP)设备,这些设备以低速率向中央服务器发送小数据包。尽管各个设备以较低的速率生成数据,但是产生的总体流量却很大,并且破坏了网络通信功能。这项研究工作集中于传输层功能的可伸缩性。特别是,TCP拥塞控制机制对智能电表的流量无效,因为大量数据来自大量单独的来源。这种情况使TCP拥塞控制机制即使发生拥塞也无法降低传输速率。其结果是,智能计量网络中的计量数据丢失率很高,竞争流量的吞吐量降低。为增强智能计量基础架构(SMI)中TCP的性能,我们引入了一种基于TCP的新颖方案,称为拆分和聚合TCP(SA-TCP)。此方案基于升级SMI中的中间设备(在业界称为区域收集器)的想法,以提供聚合TCP连接的服务。 SA-TCP聚合器通过单独的TCP连接从其区域的智能电表收集数据包;所提出的拆分和聚合方案可以更好地响应流量条件,最重要的是,可以使TCP拥塞控制和流控制机制有效。在广泛的ns-2模拟的支持下,我们展示了SA-TCP方法在吞吐量和丢包率性能指标方面缓解问题的有效性。提供了SA-TCP的完整数学模型。该模型在预测SA-TCP方案的两个阶段(分别和组合)的吞吐量,分组丢失率和端到端延迟方面具有很高的准确性和灵活性。考虑到该方案的两个阶段,建模方法在第一阶段使用马尔可夫模型表示智能电表,在第二阶段使用SA-TCP聚合器。然后,该方法通过标准排队模型研究了智能电表和SA-TCP聚合器与网络的交互。 ns-2仿真验证了数学模型结果。对SA-TCP方案进行了全面的性能分析。它研究了各种参数的变化对方案的影响,包括网络链路容量的影响,充当SA-TCP聚合器的RC的缓冲能力,电表和实用程序服务器之间的传播延迟,最后是SA-TCP聚合器的数量。性能结果表明,调整这些参数可以进一步增强SMI中的拥塞控制。因此,本文还提出了一种优化模型,以实现更好的TCP性能并确保令人满意的性能结果,例如最小的丢失率和可接受的端到端延迟。优化模型还考虑通过平衡SA-TCP聚合器的数量和链路带宽来最小化SA-TCP方案的部署成本,同时仍然满足性能要求。

著录项

  • 作者

    Khalifa Tarek;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号