首页> 外文OA文献 >System Identification and Adaptive Compensation of Friction in Manufacturing Automation Systems
【2h】

System Identification and Adaptive Compensation of Friction in Manufacturing Automation Systems

机译:制造自动化系统中的系统辨识与摩擦力自适应补偿

摘要

Industrial demands for more efficient machine tool systems have been significantly increased. In order to obtain high performance machine tool systems, researchers are focused on enhancing functioning of various components of machine tool systems. Feed drives are important component of the most of machine tool systems such as computer numerical control (CNC) machines for achieving desirable performance. An essential research stream of current interest aiming enhancement of feed drive performance is construction of control methods that help to decrease tool positioning errors in the system. An effective approach for mitigation or reduction of positioning errors is modeling, identifying, and compensating friction in appropriate manner. In addition, accurate modeling of feed drive systems is essential in elimination of these positioning errors. In this thesis, the precision control of feed drives is studied using several different control methods. Firstly, the feed drive type that has common use in machine tools is chosen to be main focus for this research, namely ball screw drive. Different dynamic models of ball screw drive are shown in detail. In addition, some of the nonlinearities that affect ball screw dynamics such as friction affects are discussed. Friction modeling needs to be performed realistically and accurately in order to design an effective compensator to cancel friction effects. In general, the friction models are divided into two categories; classic (static) and dynamic friction models. In this thesis, we present details of these models and derive linear parametrization of the key ones. Based on the derived linear parametric models, we design a least-squares on-line friction estimator and adaptive friction compensation scheme. The performance of these designs are verified via simulation and real-time experimental tests. Noting that the parameters of the base rigid body model, i.e., inertia and viscosity constants, need to be known precisely for effective high precision control tasks, including the aforementioned adaptive schemes. The second part of the thesis focuses on off-line identification of these key base model parameters. In this part, we present a real-life case study on identification of plant and built-in controller parameters and a simulator design based on this identification for a grinding CNC machine used in a gear manufacturing company.
机译:工业上对更有效的机床系统的需求已经大大增加。为了获得高性能的机床系统,研究人员专注于增强机床系统的各个组件的功能。进给驱动器是大多数机床系统(例如计算机数控(CNC)机床)中重要的组成部分,它们可实现理想的性能。当前旨在提高进给驱动性能的重要研究流是控制方法的构建,该方法有助于减少系统中的刀具定位误差。减轻或减少定位误差的有效方法是以适当的方式建模,识别和补偿摩擦。此外,进给驱动系统的精确建模对于消除这些定位误差至关重要。本文采用几种不同的控制方法研究了进给驱动的精度控制。首先,选择在机床上常用的进给驱动类型作为本研究的主要重点,即滚珠丝杠驱动。详细显示了滚珠丝杠传动的不同动态模型。此外,还讨论了一些影响滚珠丝杠动力学的非线性因素,例如摩擦影响。摩擦建模需要现实而准确地进行,以便设计一种有效的补偿器来消除摩擦效应。一般而言,摩擦模型分为两类。经典(静态)和动态摩擦模型。在本文中,我们将介绍这些模型的详细信息,并推导关键模型的线性参数化。基于导出的线性参数模型,我们设计了最小二乘在线摩擦估计器和自适应摩擦补偿方案。这些设计的性能通过仿真和实时实验测试得到验证。注意,对于包括上述自适应方案的有效的高精度控制任务,需要精确地知道基本刚体模型的参数,即惯性和粘度常数。本文的第二部分着重于这些关键基础模型参数的离线识别。在这一部分中,我们将提供有关齿轮厂和内置控制器参数识别的真实案例研究,并基于此识别结果为齿轮制造公司中使用的磨削CNC机床设计模拟器。

著录项

  • 作者

    Turhan Mustafa Hakan;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号