首页> 外文OA文献 >High Performance n-Type Polymer Semiconductors for Printed Logic Circuits
【2h】

High Performance n-Type Polymer Semiconductors for Printed Logic Circuits

机译:用于印刷逻辑电路的高性能n型聚合物半导体

摘要

Solution processable polymer semiconductors open up potential applications for radio-frequency identification (RFID) tags, flexible displays, electronic paper and organic memory due to their low cost, large area processability, flexibility and good mechanical properties. An inverter, providing the ‘NOT’ logic function, is a fundamental unit in these applications. A complementary inverter, which consists of both p-type and n-type transistors, offers low power consumption, higher voltage gain, and stronger immunity against noise, and thus is most widely studied and used for integrated circuits. A high-performance complementary logic circuit requires p-type and n-type transistors with high and balanced hole and electron mobilities. However, stable n-type polymer semiconductors are rare and the current level of electron mobility of n-type polymers remains much lower than that of p-type polymers. In this work, a number of high-performance n-type polymer semiconductors were successfully developed using several approaches. In Chapter 2, a new polymer semiconductor with a record high electron mobility value of 6.30 cm2V-1s-1 in OTFT devices was developed. This polymer contains a key new electron-accepting building block, DBPy, which consists of a DPP core flanked with two 2-pyridinyl substituents. The 2-pyridinyl substituents can effectively alleviate its steric interaction with the DPP core, resulting in a highly coplanar structure; meanwhile, the relatively electron deficient characteristic of pyridine helped to reduce the LUMO energy level. Our results demonstrate that DBPy is a highly promising new building block for polymer semiconductors for ambipolar complementary logic.In Chapter 3, a DBPy-thieno[3,2-b]thiophene copolymer with a high ambipolar performance was synthesized. The source and drain electrodes of the OTFT devices were modified with a thin layer of polyethyleneimine (PEI) to convert the polymer into a unipolar n-type semiconductor, achieving an electron mobility as high as 2.38 cm2V-1s-1. This opens a door to ambipolar polymers to be used as n-type polymers for complementary circuits.In Chapter 4, the surface modification of source and drain electrodes by an ultrathin layer (~ 2-5 nm) of polyethyleneimine (PEI) on source and drain electrodes utilized in Chapter 3, is further demonstrated to be an effective and universal way to convert other ambipolar polymers and even a p-type semiconductor into unipolar n-type semiconductors in OTFTs. In Chapter 5, another general approach to converting ambipolar and even p-type polymer semiconductors into unipolar n-type semiconductor materials for high performance OTFTs was discovered by doping these polymers with a small amount of PEI. The PEI dopant was uniformly distributed throughout polymer semiconductors even when the blend films were annealed at high temperatures up to 200ºC. This general doping method is a significant step forward for making complementary circuits using ambipolar and even p-type polymer semiconductors in n-channel OTFTs. In the Conclusion and Outlook, the fabrication of complementary inverters based on both p-type and n-type OTFTs using the general approach developed in Chapter 5 is discussed. The inverters demonstrate low power consumption, high voltage gain and strong robustness to noise.
机译:可溶液加工的聚合物半导体由于其低成本,大面积可加工性,柔韧性和良好的机械性能而为射频识别(RFID)标签,柔性显示器,电子纸和有机存储器打开了潜在的应用领域。提供“ NOT”逻辑功能的逆变器是这些应用中的基本单元。由p型和n型晶体管组成的互补逆变器功耗低,电压增益高,抗噪声能力强,因此被广泛研究并用于集成电路。高性能互补逻辑电路需要具有高且平衡的空穴和电子迁移率的p型和n型晶体管。但是,稳定的n型聚合物半导体很少见,n型聚合物的电子迁移率目前水平仍然远低于p型聚合物。在这项工作中,使用几种方法成功开发了许多高性能n型聚合物半导体。在第二章中,开发了一种新的聚合物半导体,其在OTFT器件中的电子迁移率值达到了创纪录的6.30 cm2V-1s-1。该聚合物包含一个关键的新的电子接受结构单元DBPy,该结构单元由一个带有两个2-吡啶基取代基的DPP核组成。 2-吡啶基取代基可有效减轻其与DPP核的空间相互作用,从而形成高度共面的结构;同时,吡啶相对电子不足的特性有助于降低LUMO能级。我们的结果表明,DBPy是用于双极性互补逻辑的聚合物半导体的极有前途的新组成部分。在第3章中,合成了具有高双极性性能的DBPy-噻吩并[3,2-b]噻吩共聚物。 OTFT器件的源电极和漏电极经过修饰的聚乙烯亚胺(PEI)薄层,将聚合物转换为单极性n型半导体,实现了高达2.38 cm2V-1s-1的电子迁移率。这为双极性聚合物用作互补电路的n型聚合物打开了一扇门。在第4章中,通过在源极和漏极上的聚乙烯亚胺(PEI)的超薄层(〜2-5 nm)对源极和漏极进行表面改性。在第3章中使用的漏电极被进一步证明是一种将OTFT中的其他双极性聚合物甚至p型半导体转换为单极性n型半导体的有效且通用的方法。在第5章中,发现了另一种将双极性甚至p型聚合物半导体转换为用于高性能OTFT的单极性n型半导体材料的通用方法,方法是在这些聚合物中掺入少量PEI。即使将共混膜在高达200ºC的高温下退火,PEI掺杂剂也可以均匀分布在整个聚合物半导体中。对于在n沟道OTFT中使用双极性甚至p型聚合物半导体制造互补电路,这种通用的掺杂方法是向前迈出的重要一步。在结论和展望中,讨论了使用第5章开发的通用方法制造基于p型和n型OTFT的互补反相器。逆变器具有低功耗,高电压增益和强大的抗噪声能力。

著录项

  • 作者

    Sun Bin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号