首页> 外文OA文献 >Chlorine Contribution to Quantitative Structure and Activity Relationship Models of Disinfection By-Productsu27 Quantum Chemical Descriptors and Toxicities
【2h】

Chlorine Contribution to Quantitative Structure and Activity Relationship Models of Disinfection By-Productsu27 Quantum Chemical Descriptors and Toxicities

机译:氯对消毒副产物定量结构和活性关系模型的贡献 u27量子化学描述符和毒性

摘要

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
机译:定量构效关系(QSAR)已广泛用于预测饮用水中消毒副产物(DBP)的毒性。在许多毒理学特性中,DBP的急性和慢性毒性已广泛用于DBP的健康风险评估。这些毒性与分子特性有关,而分子特性通常与分子描述符有关。本论文的主要目的是:1)通过QSAR建模和分析,研究分子描述子(例如氯数)对分子特性如最低空分子轨道能量(ELUMO)的影响。 2)通过使用内部和外部交叉验证技术来验证模型; 3)通过泰勒和蒙特卡洛模拟对模型不确定性进行量化。预测分子性质(例如ELUMO)的非常重要的方法之一是使用QSAR分析。在这项研究中,氯(NCl)和碳(NC)的数量以及最高占据分子轨道的能量(EHOMO)被用作分子描述子。 QSAR模型开发通常使用三种方法:1)线性或多线性回归(MLR); 2)偏最小二乘(PLS); 3)主成分回归(PCR)。在QSAR分析中,非常关键的一步是在建立QSAR模型之后并将其应用于毒性预测之前进行模型验证。要研究的DBP包括五种化学类别:氯化烷烃,烯烃和芳烃。此外,已开发出经过验证的QSAR,以描述DBP化学品的选定基团(即,氯烷烃和具有硝基或氰基的芳族化合物)对三种类型的生物(例如,鱼类,梨形衣藻和P (Pysphoreum)。结果表明:1)利用QSAR模型预测由MLR,PLS或PCR建立的分子特性,可用于选择有效数据点或消除异常值。 2)单凭单出交叉验证程序本身不足以可靠地表示QSAR模型的预测能力,但是,单出多出/ K倍交叉验证和外部验证可以一起使用以获得更可靠的结果; 3)对于几类DBP,ELUMO与NCI高度相关; 4)根据使用泰勒方法进行的不确定性分析,对于所有DBP类,QSAR模型的不确定性主要来自NCI。

著录项

  • 作者

    Wang Fang;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号