首页> 外文OA文献 >Movement Effects on the Flow Physics and Nutrient Delivery in Engineered Valvular Tissues
【2h】

Movement Effects on the Flow Physics and Nutrient Delivery in Engineered Valvular Tissues

机译:运动对工程瓣膜组织流动物理和营养输送的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-t , explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-t environments.
机译:在多种组织工程学研究中,机械调理已被证明可以促进组织形成。然而,外部机械刺激调节细胞和组织的潜在机制尚不清楚。由于围绕天然瓣膜的强烈血液动力学环境,这在心脏瓣膜组织工程(HVTE)领域特别重要。一些研究表明,由稳定流动和支架弯曲引起的振荡剪切应力(OSS)在源自骨髓干细胞(BMSC)的工程组织形成中起关键作用。另外,支架弯曲可增强营养物(例如氧气,葡萄糖)的运输。在这项研究中,我们通过计算量化了i)流体引起的剪应力的大小; ii)使用振荡剪切指数(OSI)参数在流场中的瞬时流体振荡程度,以及iii)葡萄糖和氧气的质量传输曲线。注意到样品的周期性挠曲会引起高度的振荡切应力(OSS),我们结合了生物反应器内样品的移动边界计算流体动力学模拟,以考虑以下影响:1)无流动,无挠曲(对照组),2 )单独的稳态流动,3)单独的循环挠曲和4)组合的稳态流动和循环挠曲环境。我们还将扩散和常规传质方程耦合到了模拟系统。我们发现,由新引入的参数OSI-t所描述的OSS和明显的剪应力大小的共存,解释了以前通过结合循环挠曲和稳态流动状态观察到的高水平的工程胶原蛋白。另一方面,这些指标中的每一个都没有显示关联。这一发现表明,周期性的弯曲和稳定的流动可以通过OSS协同促进工程性心脏瓣膜组织的产生,只要振荡伴随着临界剪应力的大小即可。此外,我们的模拟结果表明,低孔隙率样品移动可增强葡萄糖和氧气的质量传递,但在高度多孔的支架中不起作用。初步的体外实验表明,在OSI-t环境中细胞增殖和表型得到增强。

著录项

  • 作者

    Salinas Manuel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号