首页> 外文OA文献 >Automated Detection of Syntactic Ambiguity Using Shallow Parsing and Web Data
【2h】

Automated Detection of Syntactic Ambiguity Using Shallow Parsing and Web Data

机译:利用浅析构和Web数据自动检测句法歧义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Technical documents are mostly written in natural languages and they are highly ambiguity-prone due to the fact that ambiguity is an inevitable feature of natural languages. Many researchers have urged technical documents to be free from ambiguity to avoid unwanted and, in some cases, disastrous consequences ambiguity and misunderstanding can have in technical context. Therefore the need for ambiguity detection tools to assist writers with ambiguity detection and resolution seems indispensable. The purpose of this thesis work is to propose an automated approach in detection and resolution of syntactic ambiguity. AmbiGO is the name of the prototyping web application that has been developed for this thesis which is freely available on the web. The hope is that a developed version of AmbiGO will assist users with ambiguity detection and resolution. Currently AmbiGO is capable of detecting and resolving three types of syntactic ambiguity, namely analytical, coordination and PP attachment types. AmbiGO uses syntactic parsing to detect ambiguity patterns and retrieves frequency counts from Google for each possible reading as a segregate for semantic analysis. Such semantic analysis through Google frequency counts has significantly improved the precision score of the tool’s output in all three ambiguity detection functions. AmbiGO is available at this URL: http://omidemon.pythonanywhere.com/
机译:技术文档大多使用自然语言编写,并且由于歧义是自然语言的必然特征,因此它们极易产生歧义。许多研究人员敦促技术文档不要含糊不清,以避免不必要的,在某些情况下,在技术背景下可能会造成含糊不清和误解的灾难性后果。因此,需要模糊检测工具来帮助作者进行模糊检测和解决。本文工作的目的是提出一种自动方法来检测和解决句法歧义。 AmbiGO是为该论文开发的原型Web应用程序的名称,可在Web上免费获得。希望AmbiGO的开发版本将帮助用户进行歧义检测和解决。目前,AmbiGO能够检测和解决三种类型的句法歧义,即分析,协调和PP依附类型。 AmbiGO使用语法分析来检测歧义模式,并从Google检索每个可能阅读的频率计数,作为语义分析的隔离。通过Google频率计数的这种语义分析在所有三个歧义检测功能中都显着提高了该工具输出的精度得分。可通过以下URL获得AmbiGO:http://omidemon.pythonanywhere.com/

著录项

  • 作者

    Khezri Reza;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号