首页> 外文OA文献 >Manikin Time; Development of the Virtual Manikin with External Root and Improved Inverse Kinematics
【2h】

Manikin Time; Development of the Virtual Manikin with External Root and Improved Inverse Kinematics

机译:人体模型时间;基于外根和改进逆运动学的虚拟人体模型的开发

摘要

Simulating manual assembly operations considering ergonomic load and clearancedemands requires detailed modeling of human body kinematics and motions, aswell as a tight coupling to powerful algorithms for collision-free path planning.The focus in this thesis is kinematics including balance and contact forces, andergonomically preferable motions in free space. A typical manikin has more than100 degrees of freedom. To describe operations and facilitate motion generation,the manikin is equipped with coordinate frames attached to end-effectorslike hands and feet. The inverse kinematic problem is to find joint values suchthat the position and orientation of hands and feet matches certain target framesduring an assembly motion. This inverse problem leads to an underdeterminedsystem of equations since the number of joints exceeds the end-effectors’ constraints.Due to this redundancy there exist a set of solutions, allowing us toconsider ergonomics aspects and maximizing comfort when choosing one solution.The most common approach to handle both forward and inverse kinematics isbuilding a hierarchy of joints and links where one root must be defined. A popularplace to define the root is in a body part, e.g. in a foot. This leads toa two-step procedure; (i) determining if re-rooting is necessary, (ii) solving theinverse kinematic problem using the Penrose pseudoinverse.In this thesis we propose using a fixed exterior root by introducing six additionalparameters positioning the lower lumbar - three rotations and three translations.This makes it possible to reposition the manikin without a series of re-rootingoperations. Another important aspect is to keep the manikin, affected by internaland external forces and moments, in balance. However, by utilizing the exteriorroot and its added degrees of freedom it is possible to solve the balance, positioning,contact force and comfort problems simultaneously in a unified way.A manikin was implemented, and some specific test cases demonstrate the applicabilityof the presented method and also use randomized goals to show thegenerality of the solver.
机译:在考虑人体工程学载荷和间隙要求的情况下模拟手动装配操作需要对人体运动学和运动进行详细建模,并与无碰撞路径规划的强大算法紧密结合。本文的重点是运动学,包括平衡力和接触力,以及符合人体工程学的运动在自由空间中。典型的人体模型有100多个自由度。为了描述操作并促进运动生成,人体模型配备了坐标框架,该坐标框架连接到末端执行器(如手和脚)上。运动学上的逆问题是找到关节值,以使手脚的位置和方向在装配运动期间与某些目标框架匹配。由于关节的数量超过了末端执行器的约束,因此反问题导致方程组的确定性不足。由于这种冗余,存在一组解决方案,使我们可以考虑人体工程学方面的问题并在选择一个解决方案时最大程度地提高舒适度。处理正向运动学和逆向运动学都建立了关节和链接的层次结构,其中必须定义一个根。定义根的流行位置是在身体部位,例如在脚上。这导致了两步过程。 (i)确定是否需要重新生根,(ii)使用Penrose伪逆来解决运动学逆问题。在本文中,我们建议使用固定的外部根,方法是引入六个附加参数来定位下腰椎-三个旋转和三个平移。无需一系列重新生根操作就可以重新定位人体模型。另一个重要方面是使人体模型在受到内外力和力矩影响的情况下保持平衡。然而,通过利用外部根及其附加的自由度,可以同时解决平衡,定位,接触力和舒适性问题。人体模型被实现,并且一些具体的测试案例证明了所提出方法的适用性。还使用随机目标来显示求解器的一般性。

著录项

  • 作者

    Delfs Niclas;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号