首页> 外文OA文献 >Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations
【2h】

Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations

机译:地形应力和岩石破裂:任意地形的二维数值模型和与钻孔观测的初步比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Theoretical calculations indicate that elastic stresses induced by surface topography may be large enough in some landscapes to fracture rocks, which in turn could influence slope stability, erosion rates, and bedrock hydrologic properties. These calculations typically have involved idealized topographic profiles, with few direct comparisons of predicted topographic stresses and observed fractures at specific field sites. We use a numerical model to calculate the stresses induced by measured topographic profiles and compare the calculated stress field with fractures observed in shallow boreholes. The model uses a boundary element method to calculate the stress distribution beneath an arbitrary topographic profile in the presence of ambient tectonic stress. When applied to a topographic profile across the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania, the model predicts where shear fractures would occur based on a Mohr–Coulomb criterion, with considerable differences in profiles of stresses with depth beneath ridgetops and valley floors. We calculate the minimum cohesion required to prevent shear failure, C[subscript min], as a proxy for the potential for fracturing or reactivation of existing fractures. We compare depth profiles of C[subscript min] with structural analyses of image logs from four boreholes located on the valley floor, and find that fracture abundance declines sharply with depth in the uppermost 15 m of the bedrock, consistent with the modeled profile of C[subscript min]. In contrast, C[subscript min] increases with depth at comparable depths below ridgetops, suggesting that ridgetop fracture abundance patterns may differ if topographic stresses are indeed important. Thus, the present results are consistent with the hypothesis that topography can influence subsurface rock fracture patterns and provide a basis for further observational tests.
机译:理论计算表明,表面地形引起的弹性应力在某些景观中可能足以破裂岩石,从而又可能影响边坡稳定性,侵蚀率和基岩水文性质。这些计算通常涉及理想化的地形剖面,几乎没有直接比较预测的地形应力和在特定现场位置观察到的裂缝。我们使用数值模型来计算由测得的地形剖面引起的应力,并将计算出的应力场与在浅孔中观察到的裂缝进行比较。该模型使用边界元方法在存在环境构造应力的情况下计算任意地形剖面下的应力分布。当将其应用于宾夕法尼亚州中部萨斯奎哈那页岩山临界区天文台的地形剖面时,该模型根据Mohr-Coulomb准则预测剪切裂缝将发生的位置,应力分布的差异与在山脊顶部和山谷底部的深度有关。我们计算了防止剪切破坏所需的最小内聚力C [下标min],以作为对现有裂缝进行压裂或再活化的潜在手段。我们将C [下标min]的深度剖面与位于谷底的四个钻孔的图像测井的结构分析进行了比较,发现裂缝丰度随基岩最上层15 m的深度而急剧下降,这与C的模拟剖面一致[下标分钟]。相反,在山脊顶部以下相当的深度处,C [下标min]随深度增加,这表明如果地形应力确实很重要,山脊顶部裂缝的丰度模式可能会有所不同。因此,目前的结果与这样的假设是一致的,即地形会影响地下岩石的破裂模式,并为进一步的观测试验提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号