首页> 外文OA文献 >Deformation-based loop closure for large scale dense RGB-D SLAM
【2h】

Deformation-based loop closure for large scale dense RGB-D SLAM

机译:基于变形的环路闭合,适用于大规模密集RGB-D sLam

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a system for capturing large scale dense maps in an online setting with a low cost RGB-D sensor. Central to this work is the use of an “as-rigid-as-possible” space deformation for efficient dense map correction in a pose graph optimisation framework. By combining pose graph optimisation with non-rigid deformation of a dense map we are able to obtain highly accurate dense maps over large scale trajectories that are both locally and globally consistent. With low latency in mind we derive an incremental method for deformation graph construction, allowing multi-million point maps to be captured over hundreds of metres in real-time. We provide benchmark results on a well established RGB-D SLAM dataset demonstrating the accuracy of the system and also provide a number of our own datasets which cover a wide range of environments, both indoors, outdoors and across multiple floors.
机译:在本文中,我们提出了一种使用低成本RGB-D传感器在线捕获大型密集地图的系统。这项工作的核心是在姿势图优化框架中使用“尽可能精确”的空间变形进行有效的密集图校正。通过将姿势图优化与密集图的非刚性变形相结合,我们能够在局部和全局一致的大规模轨迹上获得高精度的密集图。考虑到低延迟,我们推导了一种用于变形图构造的增量方法,可以在数百米处实时捕获数百万个点图。我们在建立良好的RGB-D SLAM数据集上提供基准测试结果,以证明系统的准确性,并且还提供许多我们自己的数据集,这些数据集涵盖室内,室外以及跨多个楼层的各种环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号