首页> 外文OA文献 >Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures
【2h】

Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures

机译:在非常低的温度下通过金属玻璃中的剪切 - 扩散转变进行应力驱动的结晶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At elevated temperatures, glasses crystallize via thermally activated diffusion. However, metallic glasses can also undergo deformation-induced crystallization at very low temperatures. Here we demonstrate the crystallization of Al[subscript 50]Fe[subscript 50] metallic glasses under cyclic deformation at 50 K using molecular dynamics simulations and reveal the underlying atomic-scale processes. We demonstrate that stress-driven nonaffine atomic rearrangements, or shear diffusion transformation (SDT) events, lead to successive metabasin-to-metabasin transitions and long-range ordering. We also illustrate that the nucleation and growth of the crystal proceed via collective attachment of ordered clusters, advancing the amorphous/crystal interface in an intermittent manner. The cooperative nature of the steplike crystallization is attributed to the large activation volume of Eshelby transformations which generate as a by-product nonaffine diffusive atomic displacements that accumulate over loading cycles. The dual nature of shear (affine) and diffusion (nonaffine) in low-temperature stress-driven SDT events thus unifies inelasticity with crystallization.
机译:在升高的温度下,玻璃通过热活化扩散而结晶。但是,金属玻璃也可能在非常低的温度下发生变形诱发的结晶。在这里,我们使用分子动力学模拟证明了在50 K循环变形下Al [下标50] Fe [下标50]金属玻璃的结晶,并揭示了潜在的原子尺度过程。我们证明,应力驱动的非仿射原子重排或剪切扩散转变(SDT)事件会导致连续的水盆到metabasin过渡和远距离排序。我们还说明了晶体的成核和生长是通过有序簇的集体附着而进行的,以间歇方式推进非晶/晶体界面。阶梯状结晶的协作性质归因于埃舍尔比转换的大量活化体积,埃舍尔比转换产生副产物非仿射扩散原子位移,这些位移在加载循环中累积。因此,在低温应力驱动的SDT事件中,剪切(仿射)和扩散(非仿射)的双重性质统一了结晶的非弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号