首页> 外文OA文献 >Multistage Air Traffic Flow Management under Capacity Uncertainty: A Robust and Adaptive Optimization Approach
【2h】

Multistage Air Traffic Flow Management under Capacity Uncertainty: A Robust and Adaptive Optimization Approach

机译:容量不确定下的多级空中交通流量管理:一种鲁棒自适应优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the first application of robust and adaptive optimization in the Air Traffic Flow Management (ATFM) problem. The existing models for network-wide ATFM assume deterministic capacity estimates across airports and sectors without taking into account the uncertainty in capacities induced by weather. We introduce a weather-front based approach to model the uncertainty inherent in airspace capacity estimates resulting from the impact of a small number of weather fronts moving across the National Airspace (NAS). The key advantage of our uncertainty set construction is the low-dimensionality (uncertainty in only two parameters govern the overall uncertainty set for each airspace element). We formulate the consequent ATFM problem under capacity uncertainty within the robust and adaptive optimization framework and propose tractable solution methodologies. Our theoretical contributions are as follows: i) we propose a polyhedral description of the convex hull of the discrete uncertainty set; ii) we prove the equivalence of the robust problem to a modified instance of the deterministic problem; and iii) we solve optimally the LP relaxation of the adaptive problem using piece-wise affine policies where the number of pieces in an optimal policy are governed by the number of extreme points in the uncertainty set. A particularly attractive feature is that for most practically encountered instances, an affine policy suffices to solve the adaptive problem optimally. Finally, we report empirical results from the proposed models on real world flight schedules augmented with simulated weather fronts that illuminate the merits of our proposal. The key insights from our computational results are: i) the robust problem inherits all the attractive properties of the deterministic problem (e.g., superior integrality properties and fast computational times); and ii) the price of robustness and adaptability is typically small.
机译:在本文中,我们研究了鲁棒和自适应优化在空中交通流量管理(ATFM)问题中的首次应用。现有的全网空中交通流量管理模型在不考虑天气引起的容量不确定性的情况下,假设了各个机场和部门的确定性容量估计。我们引入了一种基于天气前沿的方法来对空域容量估计中固有的不确定性进行建模,该不确定性是由于少数天气前沿在美国国家空域(NAS)上移动而产生的。我们的不确定性集合构造的主要优势是低维度(只有两个参数的不确定性控制着每个空域元素的总体不确定性集合)。我们在鲁棒和自适应优化框架内,在容量不确定性下制定了随之而来的ATFM问题,并提出了可解决的方法论。我们的理论贡献如下:i)我们提出了离散不确定性集的凸包的多面体描述; ii)我们证明了鲁棒问题与确定性问题的修改实例的等价性; iii)我们使用分段仿射策略来最优地解决自适应问题的LP松弛,其中最优策略中的片段数由不确定性集中的极点数控制。一个特别吸引人的特征是,对于大多数实际遇到的情况,仿射策略足以最佳地解决自适应问题。最后,我们报告了在真实世界航班时刻表上提出的模型的实证结果,并通过模拟的天气前沿进行了补充,从而阐明了我们提议的优点。从我们的计算结果中得出的主要见解是:i)健壮问题继承了确定性问题的所有吸引人的属性(例如,优越的完整性和快速的计算时间); ii)健壮性和适应性的价格通常很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号