首页> 外文OA文献 >An approximate dynamic programming approach for designing train timetables
【2h】

An approximate dynamic programming approach for designing train timetables

机译:一种用于设计列车时刻表的近似动态规划方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional approaches to solving the train timetabling problem—the optimal allocation of when each train arrives and departs each station—have relied on Mixed-Integer Programming (MIP) approaches. We propose an alternative formulation for this problem based on the modeling and algorithmic framework of approximate dynamic programming. We present a Q-learning algorithm in order to tractably solve the high-dimensional problem. We compare the performance of several variants of this approach, including discretizing the state and the action spaces, and continuous function approximation with global basis functions. We demonstrate the algorithms on two railway system cases, one minimizing energy consumption subject to punctuality constraints, and one maximizing capacity subject to safety constraints. We demonstrate that the ADP algorithm converges rapidly to an optimal solution, and that the number of iterations required increases linearly in the size of the rail system, in contrast with MIP approaches whose computation time grows exponentially. We also show that an additional benefit to the ADP approach is the intuition gained from visualizing the Q-factor functions, which graphically capture the intuitive tradeoffs between efficiency and constraints in both examples.
机译:解决火车时间表问题的传统方法(即每列火车到达和离开每个车站的最佳分配方式)依赖于混合整数规划(MIP)方法。我们基于近似动态规划的建模和算法框架,为该问题提出了另一种表示方法。为了提出高维问题,我们提出了一种Q学习算法。我们比较了这种方法的几种变体的性能,包括离散化状态和动作空间,以及使用全局基函数进行连续函数逼近。我们在两种铁路系统情况下演示了该算法,一种在守时性约束下将能耗最小化,另一种在安全性约束下使容量最大化。我们证明,与MIP方法的计算时间呈指数增长的方式相比,ADP算法可快速收敛至最佳解决方案,并且所需的迭代次数在轨道系统的大小上呈线性增加。我们还显示,通过可视化Q因子函数获得的直觉是ADP方法的另一个好处,该函数以图形方式捕获了两个示例中效率和约束之间的直观权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号