首页> 外文OA文献 >Fast methods for scheduling with applications to real-time systems and large-scale, robotic manufacturing of aerospace structures
【2h】

Fast methods for scheduling with applications to real-time systems and large-scale, robotic manufacturing of aerospace structures

机译:快速调度方法,应用于实时系统和大规模机器人制造航空航天结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Across the aerospace and automotive manufacturing industries, there is a push to remove the cage around large, industrial robots and integrate right-sized, safe versions into the human labor force. By integrating robots into the labor force, humans can be freed to focus on value-added tasks (e.g. dexterous assembly) while the robots perform the non-value-added tasks (e.g. fetching parts). For this integration to be successful, the robots need to ability to reschedule their tasks online in response to unanticipated changes in the parameters of the manufacturing process. The problem of task allocation and scheduling is NP-Hard. To achieve good scalability characteristics, prior approaches to autonomous task allocation and scheduling use decomposition and distributed techniques. These methods work well for domains such as UAV scheduling when the temporospatial constraints can be decoupled or when low network bandwidth makes inter-agent communication difficult. However, the advantages of these methods are mitigated in the factory setting where the temporospatial constraints are tightly inter-coupled from the humans and robots working in close proximity and where there is sufficient network bandwidth. In this thesis, I present a system, called Tercio, that solves large-scale scheduling problems by combining mixed-integer linear programming to perform the agent allocation and a real-time scheduling simulation to sequence the task set. Tercio generates near optimal schedules for 10 agents and 500 work packages in less than 20 seconds on average and has been demonstrated in a multi-robot hardware test bed. My primary technical contributions are fast, near-optimal, real-time systems methods for scheduling and testing the schedulability of task sets. I also present a pilot study that investigates what level of control the Tercio should give human workers over their robotic teammates to maximize system efficiency and human satisfaction.
机译:在整个航空航天和汽车制造业中,都在推动拆除大型工业机器人周围的笼子,并将尺寸正确,安全的版本集成到人力资源中。通过将机器人集成到劳动力中,人们可以解放出来专注于增值任务(例如,灵巧的装配),而机器人则可以执行非增值任务(例如,取零件)。为了使集成成功,机器人需要能够在线重新安排任务,以响应制造过程中参数的意外更改。任务分配和调度的问题是NP-Hard。为了获得良好的可伸缩性特征,用于自主任务分配和调度的现有方法使用分解和分布式技术。当临时约束可以解耦或低网络带宽使代理之间的通信变得困难时,这些方法在诸如UAV调度之类的领域中效果很好。但是,这些方法的优势在工厂设置中减弱了,在这些设置中,颞骨约束与紧密接近的人和机器人紧密地相互耦合,并且存在足够的网络带宽。在本文中,我提出了一个名为Tercio的系统,该系统通过结合混合整数线性规划来执行代理分配和实时调度仿真来对任务集进行排序,从而解决了大规模调度问题。 Tercio平均在不到20秒的时间内为10个代理和500个工作包生成接近最佳的时间表,并已在多机器人硬件测试台中得到证明。我的主要技术贡献是用于安排和测试任务集的可调度性的快速,接近最佳的实时系统方法。我还提出了一项试点研究,以研究Tercio应该给予人类工人对其机器人队友以何种控制水平,以最大程度地提高系统效率和人类满意度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号