首页> 外文OA文献 >A comprehensive system for non-intrusive load monitoring and diagnostics
【2h】

A comprehensive system for non-intrusive load monitoring and diagnostics

机译:用于非侵入式负载监控和诊断的综合系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy monitoring and smart grid applications have rapidly developed into a multi-billion dollar market. The continued growth and utility of monitoring technologies is predicated upon the ability to economically extract actionable information from acquired data streams. One of the largest roadblocks to effective analytics arises from the disparities of scale inherent in all aspects of data collection and processing. Managing these multifaceted dynamic range issues is crucial to the success of load monitoring and smart grid technology. This thesis presents NilmDB, a comprehensive framework for energy monitoring applications. The NilmDB management system is a network-enabled database that supports efficient storage, retrieval, and processing of vast, timestamped data sets. It allows a flexible and powerful separation between on-site, high-bandwidth processing operations and off-site, low-bandwidth control and visualization. Specific analysis can be performed as data is acquired, or retroactively as needed, using short filter scripts written in Python and transferred to the monitor. The NilmDB framework is used to implement a spectral envelope preprocessor, an integral part of many non-intrusive load monitoring workflows that extracts relevant harmonic information and provides significant data reduction. A robust approach to spectral envelope calculation is presented using a 4-parameter sinusoid fit. A new physically-windowed sensor architecture for improving the dynamic range of non-intrusive data acquisition is also presented and demonstrated. The hardware architecture utilizes digital techniques and physical cancellation to track a large-scale main signal while maintaining the ability to capture small-scale variations.
机译:能源监控和智能电网应用已迅速发展成数十亿美元的市场。监视技术的持续增长和实用性取决于从所获取的数据流中经济地提取可操作信息的能力。有效分析的最大障碍之一是数据收集和处理各个方面固有的规模差异。管理这些多方面的动态范围问题对于负载监控和智能电网技术的成功至关重要。本文介绍了NilmDB,这是一个用于能源监控应用程序的综合框架。 NilmDB管理系统是一个支持网络的数据库,它支持有效存储,检索和处理带有时间戳记的庞大数据集。它允许在现场,高带宽处理操作与非现场,低带宽控制和可视化之间进行灵活而强大的分离。特定的分析可以在获取数据时执行,也可以根据需要使用使用Python编写的简短过滤器脚本进行追溯,然后传输到监视器。 NilmDB框架用于实现频谱包络预处理器,这是许多非侵入式负载监控工作流的组成部分,可提取相关的谐波信息并显着减少数据。使用4参数正弦拟合提出了一种强大的频谱包络计算方法。还介绍并演示了一种新的物理窗口传感器体系结构,用于改善非侵入式数据采集的动态范围。硬件架构利用数字技术和物理抵消来跟踪大型主信号,同时保持捕获小规模变化的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号