首页> 外文OA文献 >Compressively strained Ge trigate p-MOSFETs
【2h】

Compressively strained Ge trigate p-MOSFETs

机译:压缩应变的Ge三栅极p-mOsFET

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

State of the art MOSFET performance is limited by the electronic properties of the material that is being used, silicon (Si). In order to continue performance enhancements, different materials are being studied for the extension of Si CMOS. One of the materials of interest, particularly for p-MOSFETs, is Ge because it has very high intrinsic hole mobility. Further improvements in hole mobility can be achieved by straining the material. At the same time it is important to study strained Ge transport in device architectures such as trigate MOSFETs. These devices offer the potential for better scalability than planar MOSFETs via improved electrostatics. The investigation of hole mobility in strained Ge trigate ("nanowire") p- MOSFETs is the focus of this work. To study the effects of strain on Ge as a p-channel material, Strained Germanium Directly on Insulator (SGDOI) substrates were fabricated. The substrates were strained to ~2.4% using lattice mismatch which originates from the growth of Ge on a relaxed Si₀.₆Ge₀.₄ epitaxial layer. A biaxially strained SGDOI substrate was patterned to form Ge nanowires which were measured by Raman spectroscopy to investigate the strain relaxation from the free surface. Another SGDOI substrate was used for nanowire trigate p-MOSFET fabrication. The semiconductor layer structure for the devices consisted of 10 nm-thick strained-Ge with a 5 nm-thick strained-Si cap. On-chip biaxially strained MOSFETs were compared to asymmetrically strained Ge nanowire devices. Significantly improved mobilities (~2x) were observed for nanowire devices with a width of 49 nm compared to the on-chip biaxially strained Ge controls. These mobilities are ~15x over Si universal hole mobility. The impact of strain on the transport of holes in long channel devices is also studied as a function of nanowire width. Mobility decreased for narrower nanowire MOSFETs, likely associated with increased sidewall line edge roughness scattering in narrow lines.
机译:MOSFET的性能水平受到所用材料(硅(Si))的电子性能的限制。为了继续提高性能,正在研究不同材料来扩展Si CMOS。锗(尤其对于p-MOSFET而言)是其中一种有趣的材料,因为它具有很高的固有空穴迁移率。可以通过使材料应变来进一步改善空穴迁移率。同时,重要的是研究诸如Trigate MOSFET之类的器件架构中的应变Ge传输。与平面MOSFET相比,这些器件通过改进的静电性能具有更好的可扩展性。应变锗三栅(“纳米线”)p MOSFET中空穴迁移率的研究是这项工作的重点。为了研究应变对作为p沟道材料的Ge的影响,制造了直接在绝缘体(SGDOI)衬底上的应变锗。使用晶格失配将基板应变至〜2.4%,晶格失配源自Ge在松弛Si₀.GeGe.₀外延层上的生长。将双轴应变的SGDOI衬底图案化以形成Ge纳米线,其通过拉曼光谱法测量以研究自由表面的应变松弛。另一个SGDOI基板用于纳米线三栅p-MOSFET的制造。器件的半导体层结构由厚度为10 nm的应变Ge和厚度为5 nm的应变Si盖组成。将片上双轴应变MOSFET与不对称应变的Ge纳米线器件进行了比较。与芯片上双轴应变的Ge控件相比,对于宽度为49 nm的纳米线器件,观察到迁移率显着提高(〜2x)。这些迁移率约为Si通用空穴迁移率的15倍。还研究了应变对长通道器件中空穴传输的影响,它是纳米线宽度的函数。对于较窄的纳米线MOSFET,迁移率下降,这可能与窄线中侧壁线边缘粗糙度的散射有关。

著录项

  • 作者

    Chern Winston;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号