首页> 外文OA文献 >TwitInfo: Aggregating and Visualizing Microblogs for Event Exploration
【2h】

TwitInfo: Aggregating and Visualizing Microblogs for Event Exploration

机译:TwitInfo:聚合和可视化微博以进行事件探索

摘要

Microblogs are a tremendous repository of user-generated content about world events. However, for people trying to understand events by querying services like Twitter, a chronological log of posts makes it very difficult to get a detailed understanding of an event. In this paper, we present TwitInfo, a system for visualizing and summarizing events on Twitter. TwitInfo allows users to browse a large collection of tweets using a timeline-based display that highlights peaks of high tweet activity. A novel streaming algorithm automatically discovers these peaks and labels them meaningfully using text from the tweets. Users can drill down to subevents, and explore further via geolocation, sentiment, and popular URLs. We contribute a recall-normalized aggregate sentiment visualization to produce more honest sentiment overviews. An evaluation of the system revealed that users were able to reconstruct meaningful summaries of events in a small amount of time. An interview with a Pulitzer Prize-winning journalist suggested that the system would be especially useful for understanding a long-running event and for identifying eyewitnesses. Quantitatively, our system can identify 80-100% of manually labeled peaks, facilitating a relatively complete view of each event studied.
机译:微博是用户生成的有关世界事件的大量内容的存储库。但是,对于试图通过查询诸如Twitter之类的服务来了解事件的人来说,按时间顺序排列的帖子日志很难对事件进行详细了解。在本文中,我们介绍了TwitInfo,这是一个用于可视化和汇总Twitter事件的系统。 TwitInfo允许用户使用基于时间轴的显示来浏览大量推文,该显示突出显示高推文活动的峰值。一种新颖的流算法会自动发现这些峰值,并使用推文中的文字对其进行有意义的标记。用户可以向下钻取子事件,并通过地理位置,情感和常用URL进行进一步探索。我们提供召回标准化的总体情绪可视化,以产生更真实的情绪概览。对系统的评估表明,用户能够在短时间内重建有意义的事件摘要。接受普利策奖获奖记者的采访表明,该系统对于理解长时间运行的事件和识别目击者特别有用。从数量上讲,我们的系统可以识别出80-100%的手动标记峰,从而可以相对完整地了解所研究的每个事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号