首页> 外文OA文献 >Improving speech recognition accuracy for clinical conversations
【2h】

Improving speech recognition accuracy for clinical conversations

机译:提高临床对话的语音识别准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate and comprehensive data form the lifeblood of health care. Unfortunately, there is much evidence that current data collection methods sometimes fail. Our hypothesis is that it should be possible to improve the thoroughness and quality of information gathered through clinical encounters by developing a computer system that (a) listens to a conversation between a patient and a provider, (b) uses automatic speech recognition technology to transcribe that conversation to text, (c) applies natural language processing methods to extract the important clinical facts from the conversation, (d) presents this information in real time to the participants, permitting correction of errors in understanding, and (e) organizes those facts into an encounter note that could serve as a first draft of the note produces by the clinician. In this thesis, we present our attempts to measure the performances of two state-of-the-art automatic speech recognizers (ASRs) for the task of transcribing clinical conversations, and explore the potential ways of optimizing these software packages for the specific task. In the course of this thesis, we have (1) introduced a new method for quantitatively measuring the difference between two language models and showed that conversational and dictational speech have different underlying language models, (2) measured the perplexity of clinical conversations and dictations and shown that spontaneous speech has a higher perplexity than dictational speech, (3) improved speech recognition accuracy by language adaptation using a conversational corpus, and (4) introduced a fast and simple algorithm for cross talk elimination in two speaker settings.
机译:准确而全面的数据构成了医疗保健的命脉。不幸的是,有许多证据表明当前的数据收集方法有时会失败。我们的假设是,通过开发一种计算机系统,应该能够改善通过临床相遇收集的信息的完整性和质量,该计算机系统(a)聆听患者与提供者之间的对话,(b)使用自动语音识别技术进行转录文本对话;(c)应用自然语言处理方法从对话中提取重要的临床事实;(d)向参与者实时提供此信息,以纠正理解上的错误;(e)组织这些事实转换为相遇笔记,可以作为临床医生制作的笔记的初稿。在本文中,我们提出了尝试测量两个最先进的自动语音识别器(ASR)的性能以记录临床对话的任务,并探索了针对特定任务优化这些软件包的潜在方法。在本文的研究过程中,我们(1)引入了一种定量测量两种语言模型之间差异的新方法,并表明会话和听写语音具有不同的基础语言模型,(2)测量了临床会话和听写的困惑以及证明自发语音比听写语音具有更高的困惑度;(3)通过使用会话语料库进行语言自适应来提高语音识别精度;(4)引入了一种快速简单的消除两个说话者环境中的串扰的算法。

著录项

  • 作者

    Gür Burkay;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号