首页> 外文OA文献 >Study of organic molecules and nano-particle/polymer composites for flash memory and switch applications
【2h】

Study of organic molecules and nano-particle/polymer composites for flash memory and switch applications

机译:用于闪存和开关应用的有机分子和纳米颗粒/聚合物复合材料的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Organic materials exhibit fascinating optical and electronic properties which motivate their hybridization with traditional silicon-based electronics in order to achieve novel functionalities and address scaling challenges of these devices. The application of organic molecules and nano-particle/polymer composites for flash memory and switch applications is studied in this dissertation. Facilitating data storage on individual small molecules as the approach the limits in miniaturization for ultra-high density and low power consumption media may enable orders of magnitude increase in data storage capabilities. A floating gate consisting of a thin film of molecules would provide the advantage of a uniform set of identical nano-structured charge storage elements with high molecular area densities which can result in a several-fold higher density of charge-storage sites as compared to quantum dot (QD) memory and even SONOS devices. Additionally, the discrete charge storage in such nano-segmented floating gate designs limits the impact of any tunnel oxide defects to the charge stored in the proximity of the defect site. The charge retention properties of molecular films was investigated in this dissertation by injecting charges via a biased conductive atomic force microscopy (AFM) tip into molecules comprising the thin films. The Kelvin force microscopy (KFM) results revealed minimal changes in the spatial extent of the charge trapping over time after initial injection. Fabricated memory capacitors show a device durability over 105 program/erase cycles and hysteresis window of up to 12.8 V, corresponding to stored charge densities as high as 5.4x 1013 cm-2, suggesting the potential use of organic molecules in high storage capacity memory cells. Also, these results demonstrate that charge storage properties of the molecular trapping layer can be engineered by rearranging molecules and their a-orbital overlaps via addition of dopant molecules. Finally, the design, fabrication, testing and evaluation of a MEMS switch that employs viscoelastic organic polymers doped with nano-particles as the active material is presented in this dissertation. The conductivity of the nano-composite changes 10,000-fold as it is mechanically compressed. In this demonstration the compressive squeeze is applied with electric actuation. Since squeezing initiates the switching behavior, the device is referred to as a "squitch". The squitch is essentially a new type of FET that is compatible with large area processing with printing or photolithography, on rigid or flexible substrates and can exhibit large on-to-off conduction ratio.
机译:有机材料表现出引人入胜的光学和电子特性,从而促使它们与传统的基于硅的电子器件进行杂交,以实现新颖的功能并解决这些设备的缩放挑战。本文研究了有机分子和纳米粒子/聚合物复合材料在闪存和开关应用中的应用。随着超高密度和低功耗介质的小型化极限的实现,在单个小分子上促进数据存储可以使数据存储能力提高几个数量级。由分子薄膜组成的浮栅将提供一组均匀的相同的纳米结构电荷存储元件,具有较高的分子面积密度,与量子相比,可以使电荷存储位点密度提高几倍。点(QD)内存,甚至SONOS设备。另外,在这种纳米分段的浮栅设计中的离散电荷存储限制了任何隧道氧化物缺陷对存储在缺陷部位附近的电荷的影响。本论文通过将电荷通过偏压导电原子力显微镜(AFM)尖端注入包含薄膜的分子中来研究分子膜的电荷保留特性。开尔文力显微镜(KFM)结果显示,初始注入后,电荷俘获的空间范围随时间的变化很小。制成的存储电容器在105个编程/擦除周期内显示出器件的耐用性,并且其滞后时间窗高达12.8 V,对应的存储电荷密度高达5.4x 1013 cm-2,这表明有机分子在高存储容量存储单元中的潜在用途。而且,这些结果表明,可以通过添加掺杂剂分子来重排分子及其α-轨道重叠来设计分子俘获层的电荷存储特性。最后,本文提出了一种MEMS开关的设计,制造,测试和评估,该MEMS开关采用掺有纳米颗粒的粘弹性有机聚合物作为活性材料。纳米复合材料的电导率随着机械压缩而变化10,000倍。在本演示中,压缩挤压是通过电动执行的。由于挤压会引发开关行为,因此该设备称为“弯曲”。栅极实际上是一种新型FET,与刚性或柔性衬底上的印刷或光刻大面积工艺兼容,并且可以显示较大的通断比。

著录项

  • 作者

    Paydavosi Sarah;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号