首页> 外文OA文献 >Budget-Optimal Crowdsourcing Using Low-Rank Matrix Approximations
【2h】

Budget-Optimal Crowdsourcing Using Low-Rank Matrix Approximations

机译:使用低秩矩阵近似的预算最优众包

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crowdsourcing systems, in which numerous tasks are electronically distributed to numerous "information piece- workers", have emerged as an effective paradigm for human- powered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all crowdsourcers must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in some way such as majority voting. In this paper, we consider a model of such crowdsourcing tasks and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm for deciding which tasks to assign to which workers and for inferring correct answers from the workers' answers. We show that our algorithm, based on low-rank matrix approximation, significantly outperforms majority voting and, in fact, is order-optimal through comparison to an oracle that knows the reliability of every worker.
机译:众包系统中,将众多任务以电子方式分配给众多“信息工作人员”,已经成为人力资源解决诸如图像分类,数据输入,光学字符识别,推荐,和校对。由于这些低薪工人可能不可靠,因此几乎所有的众包商都必须制定计划,以提高他们对答案的信心,通常是通过多次分配每个任务并以某种方式(例如多数投票)组合答案。在本文中,我们考虑了此类众包任务的模型,并提出了为实现目标总体可靠性而必须付出的总价格(即任务分配数量)最小化的问题。我们提供了一种新的算法,用于确定将哪些任务分配给哪些工人,并从工人的答案中推断出正确的答案。我们表明,基于低秩矩阵近似的算法,其性能明显优于多数投票,并且通过与知道每个工人可靠性的预言相比较,实际上是最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号