首页> 外文OA文献 >Shape formation by self-disassembly in programmable matter systems
【2h】

Shape formation by self-disassembly in programmable matter systems

机译:通过可编程物质系统中的自拆卸形成形状

摘要

Programmable matter systems are composed of small, intelligent modules able to form a variety of macroscale objects with specific material properties in response to external commands or stimuli. While many programmable matter systems have been proposed in fiction, (Barbapapa, Changelings from Star Trek, the Terminator, and Transformers), and academia, a lack of suitable hardware and accompanying algorithms prevents their full realization. With this thesis research, we aim to create a system of miniature modules that can form arbitrary structures on demand. We develop autonomous 12mm cubic modules capable of bonding to, and communicating with, four of their immediate neighbors. These modules are among the smallest autonomous modular robots capable of sensing, communication, computation, and actuation. The modules employ unique electropermanent magnet connectors. The four connectors in each module enable the modules to communicate and share power with their nearest neighbors. These solid-state connectors are strong enough for a single inter-module connection to support the weight of 80 other modules. The connectors only consume power when switching on or off; they have no static power consumption. We implement a number of low-level communication and control algorithms which manage information transfer between neighboring modules. These algorithms ensure that messages are delivered reliably despite challenging conditions. They monitor the state of all communication links and are able to reroute messages around broken communication links to ensure that they reach their intended destinations. In order to accomplish our long-standing goal of programmatic shape formation, we also develop a suite of provably-correct distributed algorithms that allow complex shape formation. The distributed duplication algorithm that we present allows the system to duplicate any passive object that is submerged in a collection of programmable matter modules. The algorithm runs on the processors inside the modules and requires no external intervention. It requires 0(1) storage and O(n) inter-module messages per module, where n is the number of modules in the system. The algorithm can both magnify and produce multiple copies of the submerged object. A programmable matter system is a large network of autonomous processors, so these algorithms have applicability in a variety of routing, sensor network, and distributed computing applications. While our hardware system provides a 50-module test-bed for the algorithms, we show, by using a unique simulator, that the algorithms are capable of operating in much larger environments. Finally, we perform hundreds of experiments using both the simulator and hardware to show how the algorithms and hardware operate in practice.
机译:可编程物质系统由小型智能模块组成,这些模块可以响应外部命令或刺激,形成具有特定材料属性的各种宏观对象。尽管在小说中提出了许多可编程物质系统(Barbapapa,《星际迷航》中的Changelings,《终结者》和《变形金刚》)和学术界,但缺乏合适的硬件和随附的算法阻碍了它们的完全实现。通过本论文研究,我们旨在创建一个可以按需形成任意结构的微型模块系统。我们开发了自治的12mm立方模块,它们可以与四个直接邻居结合并与其通信。这些模块是最小的能够进行感应,通信,计算和驱动的自主模块化机器人。这些模块采用独特的电永久磁铁连接器。每个模块中的四个连接器使模块能够与其最近的邻居通信并共享电源。这些固态连接器的强度足以用于单个模块间连接,以支撑80个其他模块的重量。连接器仅在打开或关闭时消耗功率。它们没有静态功耗。我们实现了许多底层通信和控制算法,可管理相邻模块之间的信息传递。这些算法可确保即使遇到挑战,也可以可靠地传递消息。它们监视所有通信链接的状态,并能够在断开的通信链接周围重新路由消息,以确保它们到达预期的目的地。为了实现我们长期的程序化形状形成目标,我们还开发了一套可证明正确的分布式算法,可以进行复杂的形状形成。我们提出的分布式复制算法允许系统复制淹没在可编程物质模块集合中的任何被动对象。该算法在模块内部的处理器上运行,不需要外部干预。每个模块需要0(1)存储和O(n)个模块间消息,其中n是系统中的模块数。该算法可以放大并产生淹没对象的多个副本。可编程物质系统是由自治处理器组成的大型网络,因此这些算法在各种路由,传感器网络和分布式计算应用中具有适用性。虽然我们的硬件系统为算法提供了50个模块的测试平台,但通过使用独特的模拟器,我们证明了算法可以在更大的环境中运行。最后,我们使用模拟器和硬件进行了数百次实验,以展示算法和硬件在实际中的工作方式。

著录项

  • 作者

    Gilpin Kyle W;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号