首页> 外文OA文献 >Fare policy analysis for public transport : a discrete-continuous modeling approach using panel data
【2h】

Fare policy analysis for public transport : a discrete-continuous modeling approach using panel data

机译:公共交通的票价政策分析:使用面板数据的离散连续建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many large metropolitan areas, public transport is very heavily used, and ridership is approaching system capacity in the peak periods. This has caused a shift in attention by agency decision-makers to strategies that can more effectively manage the demand for public transport, rather than simply increase overall demand. In other words, a need has arisen to understand not only why people use public transport as opposed to other modes but also how they use public transport, in terms of their ticket, mode, and time-of-day choices. To that end, fares become an increasingly important policy tool that can trigger certain behavioral changes among riders. This thesis develops a methodology to model, at the disaggregate level, the response of public transport users to fare changes. A discrete-continuous framework is proposed in which ticket choice is modeled at the higher (discrete) level and frequencies of public transport use, based on mode and time-of-day, are modeled at the lower (continuous) level. This framework takes advantage of the availability of smartcard data over time, allowing individual-specific behavioral changes with various fare policies to be captured. This methodology is applied to London's public transport system using Oyster smartcard data collected between November 2005 and February 2008. The results indicate a strong inertia effect in terms of ticket choice among public transport users in London. An individual's prior ticket choice is found to be a very important factor in determining their future ticket choice. This is also evident when we simulate the effects of two policy changes on ticket choices. We find that the impact of changing the prices of period tickets may take several months or more to fully materialize. In terms of the frequency of public transport use, the results indicate estimated short and long-run fare elasticities of -0.40 and -0.64, respectively, for travel on the London Underground and equivalent estimates of -0.08 and -0.13 for travel on bus.
机译:在许多大都市地区,公共交通被大量使用,在高峰期,乘客量正接近系统容量。这导致机构决策者将注意力转移到可以更有效地管理公共交通需求,而不是简单地增加总体需求的战略上。换句话说,不仅需要理解人们为什么使用公共交通工具而不是其他方式,还需要了解他们在票务,方式和时段选择方面的使用方式。为此,票价已成为越来越重要的政策工具,可以触发乘客的某些行为改变。本文提出了一种方法,可以从总体上对公共交通用户对票价变化的反应进行建模。提出了一个离散的连续框架,其中票证选择在较高(离散)级别上建模,而公共交通使用的频率(基于模式和时段)在较低(连续)级别上建模。该框架利用了随着时间推移智能卡数据的可用性,允许捕获具有各种票价政策的特定于个人的行为更改。该方法使用2005年11月至2008年2月期间收集的Oyster智能卡数据应用于伦敦的公共交通系统。结果表明,伦敦的公共交通用户在票务选择方面具有很强的惯性效应。人们发现个人的先前机票选择是决定他们未来机票选择的非常重要的因素。当我们模拟两个策略更改对票证选择的影响时,这也很明显。我们发现,改变定期票的价格所产生的影响可能需要几个月或更长时间才能完全实现。就公共交通工具的使用频率而言,结果表明,伦敦地铁出行的短期和长期票价弹性估计分别为-0.40和-0.64,公交车出行的等效票价估计为-0.08和-0.13。

著录项

  • 作者

    Zureiqat Hazem Marwan;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号