首页> 外文OA文献 >Carbon nanotube-based nanorelays for low-power circuit applications
【2h】

Carbon nanotube-based nanorelays for low-power circuit applications

机译:用于低功率电路应用的碳纳米管基纳米继电器

摘要

The objective of this research is to reduce static power dissipation by developing a vertically-oriented carbon nanotube-based nanoelectromechanical switch that has no off-state leakage current. This switch, called a nanorelay, is a mechanical switch that uses a carbon nanotube as the active component. The device consists of a line of carbon nanotubes grown on a highly-doped silicon substrate between two contacts that are electrically isolated from the substrate by an insulator. The nanorelay is actuated when a control voltage is applied between the substrate and either one of the contacts. This voltage causes the nanotube to be pulled into and eventually make physical contact with one of the contacts, which allows current to flow through the carbon nanotube. During the off state, a physical gap separates the nanotube from the contact which acts as a near-ideal tunneling barrier to virtually eliminate leakage currents. Since the nanorelay has almost no static power dissipation, it has many potential applications in low-power circuit design. This thesis makes three main contributions. First, a fabrication process to construct nanorelays is presented. Second, potential low-power circuit applications of the nanorelay are explored and implemented in a CMOS test chip. Finally, a test system is developed in order to characterize and quantify the static power savings benefits of using the nanorelay for low-power circuit applications.
机译:这项研究的目的是通过开发一种垂直截止的,基于碳纳米管的纳米机电开关来降低静态功耗,该开关不具有断态泄漏电流。这种开关称为纳米继电器,是一种使用碳纳米管作为活性成分的机械开关。该设备由生长在两个接触点之间的高掺杂硅衬底上的碳纳米管组成,两个接触点通过绝缘体与衬底电隔离。当在基板和触点之一之间施加控制电压时,纳米继电器被致动。该电压导致纳米管被拉入并最终与其中一个触点物理接触,从而使电流流过碳纳米管。在断开状态期间,物理间隙将纳米管与触点分开,该触点充当近乎理想的隧穿势垒,从而实际上消除了泄漏电流。由于纳米继电器几乎没有静态功耗,因此在低功耗电路设计中具有许多潜在的应用。本论文主要有三点贡献。首先,提出了构建纳米继电器的制造方法。其次,在CMOS测试芯片中探索并实现了纳米继电器的潜在低功耗电路应用。最后,开发了一种测试系统,以表征和量化将纳米继电器用于低功率电路应用的静态节能效果。

著录项

  • 作者

    Schmitt Courtney E;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号