首页> 外文OA文献 >Integrated approach to recovery and high availability in an updatable, distributed data warehouse
【2h】

Integrated approach to recovery and high availability in an updatable, distributed data warehouse

机译:可更新的分布式数据仓库中的恢复和高可用性的集成方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Any highly available data warehouse will use some form of data replication to ensure that it can continue to service queries despite machine failures. In this thesis, I demonstrate that it is possible to leverage the data replication available in these environments to build a simple yet efficient crash recovery mechanism that revives a crashed site by querying remote replicas for missing updates. My new integrated approach to recovery and high availability, called HARBOR (High Availability and Replication-Based Online Recovery), targets updatable data warehouses and offers an attractive alternative to the widely used log-based crash recovery algorithms found in existing database systems. Aside from its simplicity over log-based approaches, HARBOR also avoids the runtime overhead of maintaining an on-disk log, accomplishes recovery without quiescing the system, allows replicated data to be stored in non-identical formats, and supports the parallel recovery of multiple sites and database objects. To evaluate HARBOR's feasibility, I compare HARBOR's runtime overhead and recovery performance with those of two-phase commit and ARIES, the gold standard for log-based recovery, on a four-node distributed database system that I have implemented.
机译:任何高可用性的数据仓库都将使用某种形式的数据复制,以确保即使机器发生故障,它也可以继续为查询提供服务。在本文中,我演示了可以利用这些环境中可用的数据复制来构建简单而有效的崩溃恢复机制,该机制可以通过查询远程副本以查找丢失的更新来恢复崩溃的站点。我的新的恢复和高可用性集成方法称为HARBOR(基于高可用性和基于复制的在线恢复),它以可更新的数据仓库为目标,并为现有数据库系统中广泛使用的基于日志的崩溃恢复算法提供了一种有吸引力的替代方法。除了在基于日志的方法上的简单性之外,HARBOR还避免了维护磁盘日志的运行时开销,在不使系统停止的情况下完成恢复,允许将复制的数据以不同的格式存储并支持并行恢复多个网站和数据库对象。为了评估HARBOR的可行性,我在已实现的四节点分布式数据库系统上,将HARBOR的运行时开销和恢复性能与两阶段提交和ARIES(基于日志的恢复的黄金标准)的性能进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号