首页> 外文OA文献 >Stable locomotion control of bipedal walking robots : synchronization with neural oscillators and switching control
【2h】

Stable locomotion control of bipedal walking robots : synchronization with neural oscillators and switching control

机译:双足步行机器人的稳定运动控制:与神经振荡器同步和切换控制

摘要

Two novel approaches to stable legged locomotion control (neural-oscillator based control and switching control) are studied for achieving bipedal locomotion stability. Postural stability is realized by structural dynamics shaping, and gait stability is achieved by synchronization with neural oscillators and switching control. A biologically inspired control with neural oscillators (central pattern generator, abbreviated as CPG) is used for global stable locomotion of bipeds based on a mutually inhibited neural oscillator model (Matsuoka, 1985). A systematic design approach is studied for the entrainment between the dynamics of neural oscillators and the natural dynamics of the plant (bipedal skeletal dynamics) in the neural oscillator driven rhythmic control. This design can guarantee global dynamic entrainment, bipedal gait stability and system robustness, which are explored and analyzed using nonlinear system theories. The second control approach, called nonlinear switching control, is proposed to achieve stable locomotion control for a bipedal walking robot. This approach applies nonlinear switching control theory in the locomotion control system so as to ensure bipedal gait stability in the stable limit cycle sense. The switching surface is determined by means of the orbital contraction tuning technique. Both the structural dynamics stability and gait stability are analyzed. The convergence of the walking gait is proved based on nonlinear system theory. Two common features for the above control approaches are that a global state machine based switching module and a closed-loop gait stabilization mechanism are used in both control systems. In neural oscillator driven locomotion control, the sensory feedback signals are switched according to the states of global state machine. However, in the switching control, the global state machine is used to select the appropriate control sub-systems in addition to a contraction tuning mechanism. In both approaches, an explicit closed-loop gait control mechanism is implemented to guarantee the bipedal gait stability. Simulations of 2-D and 3-D bipedal walking robots demonstrate the effectiveness of the above locomotion control approaches. Different simulated experiments are given in the system analysis and evaluations. It has been shown that the above two bipedal locomotion control approaches can be further applied in the real-time control of bipedal walking robotic systems with proper locomotion stability and robustness.
机译:研究了两种新颖的稳定腿部运动控制方法(基于神经振荡器的控制和切换控制),以实现双足运动的稳定性。姿态稳定性是通过结构动力学整形实现的,步态稳定性是通过与神经振荡器同步和进行切换控制来实现的。基于相互抑制的神经振荡器模型,使用具有神经振荡器(中央模式发生器,缩写为CPG)的生物启发控制来实现Biped的全局稳定运动(Matsuoka,1985)。研究了一种系统设计方法,用于在神经振荡器驱动的节律控制中,神经振荡器的动力学与植物的自然动力学(两足动物骨骼动力学)之间的夹带。这种设计可以保证全局动态夹带,双足步态稳定性和系统鲁棒性,这是使用非线性系统理论进行探索和分析的。提出了第二种控制方法,称为非线性切换控制,以实现双足步行机器人的稳定运动控制。这种方法在运动控制系统中应用了非线性切换控制理论,以确保双足步态在稳定极限周期意义上的稳定性。借助于轨道收缩调整技术来确定切换表面。分析了结构动力学稳定性和步态稳定性。基于非线性系统理论证明了步行步态的收敛性。上述控制方法的两个共同特征是在两个控制系统中都使用了基于全局状态机的切换模块和闭环步态稳定机制。在神经振荡器驱动的运动控制中,根据全局状态机的状态切换感觉反馈信号。但是,在切换控制中,除了收缩调整机制之外,全局状态机还用于选择适当的控制子系统。在这两种方法中,都采用显式的闭环步态控制机制来确保双足步态的稳定性。 2-D和3-D双足步行机器人的仿真证明了上述运动控制方法的有效性。在系统分析和评估中给出了不同的模拟实验。已经表明,上述两种双足运动控制方法可以进一步以适当的运动稳定性和鲁棒性应用于双足步行机器人系统的实时控制中。

著录项

  • 作者

    Hu Jianjuen 1964-;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号