首页> 外文OA文献 >Continuum models of deformation mechanisms in nanocrystalline metals
【2h】

Continuum models of deformation mechanisms in nanocrystalline metals

机译:纳米晶金属变形机制的连续模型

摘要

Nanocrystalline metals are polycrystalline metals with grain sizes in the nanometer range. They have attracted significant interest in recent years due to their unique mechanical and electrical properties. The main objective of this thesis is to develop continuum-scale descriptions of nanoscale deformation and failure mechanisms in nanocrystalline metals. The research has focused on three specific aspects: the influence of grain boundary mechanisms on the grain-size dependence of the yield stress, the influence of grain boundary friction on the response to shock loading and the increased ductility accompanied by increased strength observed in ultrafine crystals with embedded growth nanotwins. A phenomenological model considering grain boundary sliding and accommodation as uncoupled dissipative deformation mechanisms is proposed to describe the constitutive behavior of grain boundaries. In agreement with atomistic models and experiments, tensile test simulations using the numerical model predict the inverse Hall-Petch effect, i.e. a dependence of the yield stress on the inverse square root of the grain size with a negative slope. In addition, the model suggests that the observed discrepancy between atomistic and experimental results may be partially related to rate dependence effects.
机译:纳米晶体金属是晶粒尺寸在纳米范围内的多晶金属。近年来,由于其独特的机械和电气特性,它们引起了人们的极大兴趣。本论文的主要目的是发展纳米尺度金属纳米变形和破坏机理的连续尺度描述。研究集中在三个具体方面:晶界机制对屈服应力的晶粒尺寸依赖性的影响,晶界摩擦对冲击载荷响应的影响以及在超细晶体中观察到的伴随韧性提高的延展性具有嵌入式生长纳米孪晶。提出了一种以晶界滑动和调节为耦合的耗散变形机制的现象学模型来描述晶界的本构行为。与原子模型和实验一致,使用数值模型的拉伸试验模拟预测了逆霍尔效应,即屈服应力对具有负斜率的晶粒尺寸的反平方根的依赖性。此外,该模型表明,观察到的原子性和实验性结果之间的差异可能部分与速率依赖性效应有关。

著录项

  • 作者

    Jérusalem Antoine 1979-;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号