首页> 外文OA文献 >Assembly of biological building blocks for nano- and micro-fabrication of materials
【2h】

Assembly of biological building blocks for nano- and micro-fabrication of materials

机译:用于纳米和微制造材料的生物构件的组装

摘要

Experimental studies were performed to fabricate various material structures using genetically engineered M13 bacteriophage. This virus template showed superior controls of material syntheses from nanoscale to microscale. Structures including nanowires, nanoparticle arrays, hetero-particle arrays, and micro-fibers were fabricated using the engineered MI3 virus as the building block and mineralization platform. The mineralization mechanisms were revealed by alternating the types and amounts of peptide motifs displayed on the viral templates. The results showed the importance of a fused peptide motif to mediate the mineralization process of a material, which was dominated by either physical absorption or chemical nucleation. The potential applications of the materials synthesized using the viral template, including energy generation and biosensors, were also demonstrated. For the first time, several types of highly engineered MI 3 virus were used to fabricate nanostructures such as nanowires, nano-arrays, hetero-particle arrays, and complex nanowires. A type 8 phage library was reported to screen peptide motifs for making nanowires. A multi-functionalized viral template, type 8-3 virus, was engineered and demonstrated to create a variety of nano-archietetures. A type 8+8 virus was used to create complex nanowires embedded with different materials. In addition, the mechanical properties of virus-based materials were evaluated and characterized for the first time. The tunable functionalities and mechanical performances of virus-based materials showed promising capabilities not only to manipulate material syntheses and structures but also to be integrated with other synthetic materials using current processing techniques.
机译:使用基因改造的M13噬菌体进行了实验研究,以制造各种材料结构。该病毒模板显示了从纳米级到微米级材料合成的卓越控制。使用工程MI3病毒作为构件和矿化平台,制造了包括纳米线,纳米颗粒阵列,异质颗粒阵列和微纤维在内的结构。通过改变病毒模板上显示的肽基序的类型和数量来揭示矿化机制。结果表明融合的肽基序对于介导材料的矿化过程的重要性,该过程主要由物理吸收或化学成核作用控制。还展示了使用病毒模板合成的材料的潜在应用,包括能量产生和生物传感器。第一次,几种类型的高度工程化的MI 3病毒被用于制造纳米结构,例如纳米线,纳米阵列,异质颗粒阵列和复杂的纳米线。据报道,一种8型噬菌体文库可以筛选用于制备纳米线的肽基序。设计并展示了一种多功能的病毒模板8-3型病毒,并证明了它可以创建各种纳米结构。使用8 + 8型病毒来创建嵌入不同材料的复杂纳米线。此外,首次评估并鉴定了基于病毒的材料的机械性能。基于病毒的材料的可调节功能和机械性能显示出令人鼓舞的功能,不仅可以操纵材料的合成和结构,而且可以使用当前的加工技术与其他合成材料集成。

著录项

  • 作者

    Chiang Chung-Yi;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号