首页> 外文OA文献 >Inferring 3D Structure with a Statistical Image-Based Shape Model
【2h】

Inferring 3D Structure with a Statistical Image-Based Shape Model

机译:用基于统计图像的形状模型推断三维结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
机译:我们提出了一种基于图像的方法来使用概率“形状+结构”模型来推断3D结构参数,一类对象的3D形状可以由轮廓视图中的轮廓集表示,这些轮廓可以同时从多个校准相机观察到。然后可以使用混合模型和概率主成分分析构建的先前密度来估计新形状的数量,然后扩展形状模型以合并感兴趣的结构特征;然后可以重新构造缺少结构参数的新示例,以获得这些参数的估计值。模型匹配和参数推断完全在图像域中完成,不需要显式的3D构造。我们的形状模型即使在输入轮廓中存在分割错误或缺少视图的情况下也可以准确估计结构,甚至仅在单个输入视图中也可以使用。从一个地图生成的数千行人图像的数据集通过合成模型,我们可以根据从真实图像中观察到的轮廓轮廓,对人体上19个关节的3D位置进行准确的推断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号