首页> 外文OA文献 >Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design
【2h】

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design

机译:用于电动汽车冷却系统设计的圆柱形锂离子电池的温度分布模型

摘要

Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the premier electric vehicle (EV) battery choice, their potential to overheat and explode is a limiting factor. Beyond certain temperature thresholds, lithium ion batteries will experience what is known as thermal runaway. During thermal runaway, the temperature of the battery increases uncontrollably and fires and explosions can occur. For this reason, adequate thermal management is a necessity in bringing lithium ion battery powered vehicles to market. The purpose of this work is to 1) develop mathematical models for temperature distribution and heat transfer in cylindrical lithium-ion cells and battery packs, 2) derive the target heat transfer coefficient for an EV cooling system 3) analyze the key design parameters of EV thermal management systems, and, ultimately, 4) determine the method of cooling necessary to prevent thermal runaway. The models are based on the fundamentals of heat transfer and are integrated into computer simulations for testing. Based on the models developed in this analysis, forced convection at the surface of the battery pack is not sufficient for preventing thermal runaway outside of minimum operational requirements (low ambient temperatures and discharge rates). For typical vehicle usage, a system in which the working fluid penetrates the pack is needed. There may be potential for a hybrid cooling system: one that relies on surface convection for less strenuous operation and strategically placed cooling channels for typical and extraneous operation.
机译:锂离子电池技术的最新发展已使BEV成为更可行的替代方案。但是,仍然存在一些安全隐患。尽管锂离子电池的能量密度几乎使它们成为首选的电动汽车(EV)电池,但其过热和爆炸的潜力却是一个限制因素。超出某些温度阈值,锂离子电池将经历所谓的热失控。在热失控过程中,电池的温度不受控制地升高,可能会引起火灾和爆炸。因此,在将锂离子电池驱动的车辆推向市场时,必须进行充分的热管理。这项工作的目的是:1)开发用于圆柱形锂离子电池和电池组中温度分布和传热的数学模型,2)得出电动汽车冷却系统的目标传热系数3)分析电动汽车的关键设计参数热管理系统,最后是4)确定为防止热失控所必需的冷却方法。这些模型基于传热的基础,并集成到计算机仿真中进行测试。根据此分析中开发的模型,电池组表面的强制对流不足以防止超出最低运行要求(低环境温度和放电速率)的热失控。对于典型的车辆使用,需要一种工作流体渗透到包装中的系统。混合冷却系统可能具有潜力:一种依靠表面对流来减少较费力的运行,而有策略地放置冷却通道以进行典型和无关的运行。

著录项

  • 作者

    Jasinski Samuel Anthony;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号