首页> 外文OA文献 >Approximate dynamic programming with applications in multi-agent systems
【2h】

Approximate dynamic programming with applications in multi-agent systems

机译:使用多代理系统中的应用程序进行近似动态编程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the development and implementation of approximate dynamic programming methods used to manage multi-agent systems. The purpose of this thesis is to develop an architectural framework and theoretical methods that enable an autonomous mission system to manage real-time multi-agent operations. To meet this goal, we begin by discussing aspects of the real-time multi-agent mission problem. Next, we formulate this problem as a Markov Decision Process (MDP) and present a system architecture designed to improve mission-level functional reliability through system self-awareness and adaptive mission planning. Since most multi-agent mission problems are computationally difficult to solve in real-time, approximation techniques are needed to find policies for these large-scale problems. Thus, we have developed theoretical methods used to find feasible solutions to large-scale optimization problems. More specifically, we investigate methods designed to automatically generate an approximation to the cost-to-go function using basis functions for a given MDP. Next, these these techniques are used by an autonomous mission system to manage multi-agent mission scenarios. Simulation results using these methods are provided for a large-scale mission problem. In addition, this thesis presents the implementation of techniques used to manage autonomous unmanned aerial vehicles (UAVs) performing persistent surveillance operations. We present an indoor multi-vehicle testbed called RAVEN (Real-time indoor Autonomous Vehicle test ENvironment) that was developed to study long-duration missions in a controlled environment.
机译:本文提出了用于管理多智能体系统的近似动态规划方法的开发与实现。本文的目的是开发一种架构框架和理论方法,以使自治任务系统能够管理实时多主体操作。为了实现此目标,我们首先讨论实时多代理任务问题的各个方面。接下来,我们将此问题表述为马尔可夫决策过程(MDP),并提出一种系统体系结构,旨在通过系统自我意识和自适应任务计划来提高任务级功能的可靠性。由于大多数多主体任务问题在计算上难以实时解决,因此需要近似技术来找到这些大规模问题的策略。因此,我们已经开发了用于找到大规模优化问题的可行解决方案的理论方法。更具体地说,我们研究了设计用于使用给定MDP的基础函数自动生成成本函数近似值的方法。接下来,自主任务系统将使用这些技术来管理多主体任务方案。使用这些方法的仿真结果可解决大规模任务问题。此外,本文提出了用于管理执行持续监视操作的自动无人驾驶飞机(UAV)的技术的实现。我们介绍了一个称为RAVEN(实时室内自动驾驶汽车测试环境)的室内多车辆测试平台,该平台旨在研究可控环境中的长时间任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号