首页> 外文OA文献 >Ultrafast sources of entangled photons for quantum information processing
【2h】

Ultrafast sources of entangled photons for quantum information processing

机译:用于量子信息处理的超快纠缠光子源

摘要

Recent advances in quantum information processing (QIP) have enabled practical applications of quantum mechanics in various fields such as cryptography, computation, and metrology. Most of these applications use photons as carriers of quantum information. Therefore, engineering the quantum state of photons is essential for the realization of novel QIP schemes. A practical and flexible technique to generate high-purity entangled photon pairs is spontaneous parametric downconversion (SPDC) which finds its use in many QIP applications such as quantum key distribution (QKD) and linear optics quantum computation. SPDC is often used with ultrafast lasers to generate photon pairs with precise timing and engineered spectral properties. In this thesis, we focused on two photonic QIP applications using ultrafastpumped SPDC. We first pursued the design and implementation of a pulsed narrowband polarization-entangled photon pairs at 780nm for free-space entanglement-based QKD. We built and characterized a compact narrowband ultraviolet pump source and a polarization-entangled photon source based on SPDC in a polarization Sagnac interferometer. We then studied the generation of coincident-frequency entangled photons for Heisenberg-limited quantum metrology. Using extended phase-matching conditions in a periodically-poled KTP crystal, generation of coincident-frequency entanglement was verified and frequency indistinguishability was achieved for broadband signal and idler photons at ~1.58 [mu]m. We also developed a novel time domain characterization technique based on time-resolved single-photon upconversion. Using this technique, we measured the joint temporal density of a two-photon state for the first time and observed temporal anti-correlation for the coincident-frequency entangled state as predicted by Fourier duality. This new technique complements existing frequency domain methods for a more complete characterization of two-photon states.
机译:量子信息处理(QIP)的最新进展已使量子力学在各种领域(例如密码学,计算和计量学)的实际应用成为可能。这些应用中的大多数将光子用作量子信息的载体。因此,设计光子的量子态对于实现新型QIP方案至关重要。自发的参量下转换(SPDC)是一种产生高纯度纠缠光子对的实用且灵活的技术,该技术已在许多QIP应用中使用,例如量子密钥分配(QKD)和线性光学量子计算。 SPDC通常与超快激光器一起使用,以产生具有精确定时和工程光谱特性的光子对。在本文中,我们重点介绍了使用超快泵浦SPDC的两种光子QIP应用。我们首先针对基于自由空间纠缠的QKD进行了780nm脉冲窄带偏振纠缠光子对的设计和实现。我们在偏振Sagnac干涉仪中建立并表征了基于SPDC的紧凑型窄带紫外泵浦光源和偏振纠缠光子源。然后,我们研究了海森堡有限量子计量学的重合频率纠缠光子的产生。在周期性极化的KTP晶体中使用扩展的相位匹配条件,验证了重合频率纠缠的产生,并且对于〜1.58μm的宽带信号和闲置光子实现了频率不可分辨。我们还开发了一种基于时间分辨的单光子上转换的新型时域表征技术。使用这种技术,我们首次测量了两个光子状态的联合时间密度,并观察到傅立叶对偶性所预测的同时频率纠缠态的时间反相关。这项新技术是对现有频域方法的补充,可以更完整地表征两个光子状态。

著录项

  • 作者

    Kuzucu Oktay Onur 1980-;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号