首页> 外文OA文献 >Design of electrode for electrochemical energy storage and conversion devices using multiwall carbon nanotubes
【2h】

Design of electrode for electrochemical energy storage and conversion devices using multiwall carbon nanotubes

机译:使用多壁碳纳米管设计电化学储能和转换装置用电极

摘要

All-multiwall carbon nanotube (MWNT) thin films are created by layer-by-layer (LbL) assembly of surface functionalized MWNTs. Negatively and positively charged MWNTs were prepared by surface functionalization, allowing the incorporation of MWNTs into highly tunable thin films via the LbL technique. The pH dependent surface charge on the MWNTs gives this system the unique characteristics of LbL assembly of weak polyelectrolytes, controlling thickness and morphology with assembly pH conditions. We demonstrate that these MWNT thin films have randomly oriented interpenetrating network structure with well developed nanopores using SEM, which is an ideal structure of functional materials for various applications. LbL-MWNT electrodes show high electronic conductivity in comparison with polymer composites with single wall nanotubes, and high capacitive behavior in aqueous electrolyte with precise control of capacity. Of significance, additive-free LbL-MWNT electrodes with thicknesses of several microns can deliver high energy density (200 Wh/kg) at an exceptionally high power of 100 kW/kg in lithium nonaqueous cells. Utilizing the redox reactions on the surface functional groups in a wide voltage window (1.5 - 4.5 V vs. lithium) in nonaqueous electrolytes, asymmetric electrochemical capacitors consisting of LbL-MWNT and either lithium or a lithium titanium oxide negative electrode exhibit gravimetric energy density -5 times higher than conventional electrochemical capacitors with comparable gravimetric power and cycle life. Thin-film LbL-MWNT electrodes could potentially lead to breakthrough power sources for microsystems and flexible electronic devices such as smart cards and ebook readers, while thicker LbL-MWNT electrodes could expand the application of electrochemical capacitors into heavy vehicle and industrial systems, where the ability to deliver high energy at high power will be an enabling technological development. Furthermore, nanoscale pseuduocapactive oxides and electrocatalysts were incorporated into LbL-MWNT electrodes for energy storage and conversion. Inorganic oxides such as MnO2 and RuO2 are incorporated to increase volumetric capacitance in LbLMWNT electrodes using electroless deposition and square wave pulse potential deposition methods. Preliminary results show that we can increase volumetric capacitance of LbLMWNT/ MnO2 and LbL-MWNT/RuO2 composite up to 1000 F/cm3 in aqueous electrolytes. In addition, Pt and Pt/Ru alloy electrocatalysts are introduced into LbL-MWNT electrodes using square wave pulse potential deposition, which show higher CO and methanol oxidation activities. Tailored incorporation of metal and oxide nanoparticles into LbLMWNT electrodes by square wave pulse potential opens a new strategy for novel energy storage and conversion electrodes with superior electrochemical properties.
机译:全多层碳纳米管(MWNT)薄膜是通过表面功能化MWNT的逐层组装(LbL)制成的。通过表面功能化制备带负电和带正电的MWNT,通过LbL技术将MWNT掺入高度可调的薄膜中。 MWNTs上与pH有关的表面电荷使该系统具有LbL弱聚电解质组装的独特特征,可通过组装pH条件控制厚度和形态。我们证明,使用SEM,这些MWNT薄膜具有随机取向的互穿网络结构以及发达的纳米孔,这是用于各种应用的功能材料的理想结构。与具有单壁纳米管的聚合物复合材料相比,LbL-MWNT电极显示出高电导率,并且在水电解质中具有高电容性能,并且可以精确控制容量。重要的是,厚度为几微米的无添加剂LbL-MWNT电极可以在锂非水电池中以100 kW / kg的超高功率提供高能量密度(200 Wh / kg)。利用非水电解质中宽电压窗口(相对于锂为1.5-4.5 V)上的表面官能团的氧化还原反应,由LbL-MWNT和锂或锂钛氧化物负电极组成的不对称电化学电容器表现出重量能量密度-重量功率和循环寿命相当,是传统电化学电容器的5倍。薄膜LbL-MWNT电极可能会为微系统和柔性电子设备(例如智能卡和电子书阅读器)带来突破性的电源,而较厚的LbL-MWNT电极则可能将电化学电容器的应用扩展到重型车辆和工业系统中,以高功率输送高能量的能力将成为一项有利的技术发展。此外,将纳米级伪活性氧化物和电催化剂结合到LbL-MWNT电极中,以进行能量存储和转化。无机氧化物(如MnO2和RuO2)通过化学沉积和方波脉冲电势沉积方法掺入到LbLMWNT电极中,以增加体积电容。初步结果表明,在水性电解质中,我们可以将LbLMWNT / MnO2和LbL-MWNT / RuO2复合材料的体积电容提高到1000 F / cm3。此外,使用方波脉冲电势沉积法将Pt和Pt / Ru合金电催化剂引入LbL-MWNT电极,这些电极显示出较高的CO和甲醇氧化活性。通过方波脉冲电势将金属和氧化物纳米粒子量身定制地结合到LbLMWNT电极中,为具有优异电化学性能的新型储能和转换电极开辟了新的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号