首页> 外文OA文献 >Computational analysis of real-time convex optimization for control systems
【2h】

Computational analysis of real-time convex optimization for control systems

机译:控制系统实时凸优化的计算分析

摘要

Computational analysis is fundamental for certification of all real-time control software. Nevertheless, analysis of on-line optimization for control has received little attention to date. On-line software must pass rigorous standards in reliability, requiring that any embedded optimization algorithm possess predictable behavior and bounded run-time guarantees. This thesis examines the problem of certifying control systems which utilize real-time optimization. A general convex programming framework is used, to which primal-dual path-following algorithms are applied. The set of all optimization problem instances which may arise in an on-line procedure is characterized as a compact parametric set of convex programming problems. A method is given for checking the feasibility and well-posedness of this compact set of problems, providing certification that every problem instance has a solution and can be solved in finite time. The thesis then proposes several algorithm initialization methods, considering the fixed and time-varying constraint cases separately. Computational bounds are provided for both cases. In the event that the computational requirements cannot be met, several alternatives to on-line optimization are suggested. Of course, these alternatives must provide feasible solutions with minimal real-time computational overhead. Beyond this requirement, these methods approximate the optimal solution as well as possible. The methods explored include robust table look-up, functional approximation of the solution set, and ellipsoidal approximation of the constraint set. The final part of this thesis examines the coupled behavior of a receding horizon control scheme for constrained linear systems and real-time optimization. The driving requirement is to maintain closed-loop stability, feasibility and well-posedness of the optimal control problem, and bounded iterations for the optimization algorithm. A detailed analysis provides sufficient conditions for meeting these requirements. A realistic example of a small autonomous air vehicle is furnished, showing how a receding horizon control law using real-time optimization can be certified.
机译:计算分析是所有实时控制软件认证的基础。然而,迄今为止,对控制的在线优化分析很少受到关注。在线软件必须通过严格的可靠性标准,要求任何嵌入式优化算法都具有可预测的行为和有限的运行时保证。本文研究了利用实时优化对控制系统进行认证的问题。使用了一个通用的凸编程框架,在该框架上应用了原对偶路径跟踪算法。可能在在线过程中出现的所有优化问题实例的集合的特征是凸编程问题的紧凑参数集。给出了一种方法来检查此紧凑问题集的可行性和适定性,并提供证明每个问题实例都有解决方案并且可以在有限时间内解决的方法。然后提出了几种算法初始化方法,分别考虑了固定约束和时变约束情况。两种情况都提供了计算范围。在无法满足计算要求的情况下,建议使用几种在线优化方法。当然,这些替代方案必须以最小的实时计算开销提供可行的解决方案。除了这一要求之外,这些方法还尽可能地逼近最佳解决方案。探索的方法包括健壮的表查找,解集的函数近似和约束集的椭圆近似。本文的最后一部分研究了线性约束系统和实时优化的后退水平控制方案的耦合行为。驱动要求是保持最佳控制问题的闭环稳定性,可行性和适定性,以及优化算法的有界迭代。详细的分析为满足这些要求提供了充分的条件。提供了一个小型自动驾驶飞行器的现实示例,该示例显示了如何验证使用实时优化的后退水平控制律。

著录项

  • 作者

    McGovern Lawrence Kent;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号