首页> 外文OA文献 >Analog VLSI circuit design of spike-timing-dependent synaptic plasticity
【2h】

Analog VLSI circuit design of spike-timing-dependent synaptic plasticity

机译:模拟VLsI电路设计的尖峰定时依赖突触可塑性

摘要

Synaptic plasticity is the ability of a synaptic connection to change in strength and is believed to be the basis for learning and memory. Currently, two types of synaptic plasticity exist. First is the spike-timing-dependent-plasticity (STDP), a timing-based protocol that suggests that the efficacy of synaptic connections is modulated by the relative timing between presynaptic and postsynaptic stimuli. The second type is the Bienenstock-Cooper-Munro (BCM) learning rule, a classical ratebased protocol which states that the rate of presynaptic stimulation modulates the synaptic strength. Several theoretical models were developed to explain the two forms of plasticity but none of these models came close in identifying the biophysical mechanism of plasticity. Other studies focused instead on developing neuromorphic systems of synaptic plasticity. These systems used simple curve fitting methods that were able to reproduce some types of STDP but still failed to shed light on the biophysical basis of STDP. Furthermore, none of these neuromorphic systems were able to reproduce the various forms of STDP and relate them to the BCM rule. However, a recent discovery resulted in a new unified model that explains the general biophysical process governing synaptic plasticity using fundamental ideas regarding the biochemical reactions and kinetics within the synapse. This brilliant model considers all types of STDP and relates them to the BCM rule, giving us a fresh new approach to construct a unique system that overcomes all the challenges that existing neuromorphic systems faced. Here, we propose a novel analog verylarge- scale-integration (aVLSI) circuit that successfully and accurately captures the whole picture of synaptic plasticity based from the results of this latest unified model. Our circuit was tested for all types of STDP and for each of these tests, our design was able to reproduce the results predicted by the new-found model. Two inputs are required by the system, a glutamate signal that carries information about the presynaptic stimuli and a dendritic action potential signal that contains information about the postsynaptic stimuli. These two inputs give rise to changes in the excitatory postsynaptic current which represents the modifiable synaptic efficacy output. Finally, we also present several techniques and alternative circuit designs that will further improve the performance of our neuromorphic system.
机译:突触可塑性是突触连接强度改变的能力,被认为是学习和记忆的基础。当前,存在两种类型的突触可塑性。首先是尖峰时序依赖可塑性(STDP),这是一种基于时序的协议,表明突触连接的功效受突触前和突触后刺激之间的相对时序调节。第二种类型是Bienenstock-Cooper-Munro(BCM)学习规则,这是一种基于速率的经典协议,该协议指出,突触前刺激的速率可调节突触强度。建立了几种理论模型来解释两种形式的可塑性,但这些模型都无法在确定可塑性的生物物理机制方面接近。相反,其他研究集中在开发突触可塑性的神经形态系统。这些系统使用了简单的曲线拟合方法,该方法能够复制某些类型的STDP,但仍无法从STDP的生物物理基础上阐明。此外,这些神经形态系统都不能复制各种形式的STDP并将其与BCM规则相关联。但是,最近的发现导致了一个新的统一模型,该模型使用有关突触内生化反应和动力学的基本思想解释了控制突触可塑性的一般生物物理过程。这个出色的模型考虑了所有类型的STDP,并将它们与BCM规则相关联,为我们提供了一种新颖的新方法来构建独特的系统,从而克服了现有神经形态系统所面临的所有挑战。在这里,我们提出了一种新颖的模拟超大规模集成电路(aVLSI)电路,该电路根据最新的统一模型的结果成功,准确地捕获了突触可塑性的整个图像。我们的电路已针对所有类型的STDP进行了测试,并且对于每种测试,我们的设计都能够重现新发现的模型所预测的结果。系统需要两个输入,一个是谷氨酸信号,该信号携带有关突触前刺激的信息;一个树突动作电位信号,包含有关突触后刺激的信息。这两个输入引起兴奋性突触后电流的变化,其代表可调节的突触功效输出。最后,我们还介绍了将进一步改善神经形态系统性能的几种技术和替代电路设计。

著录项

  • 作者

    Monzon Joshua Jen C;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号