首页> 外文OA文献 >Hillslope-scale soil moisture estimation with a physically-based ecohydrology model and L-band microwave remote sensing observations from space
【2h】

Hillslope-scale soil moisture estimation with a physically-based ecohydrology model and L-band microwave remote sensing observations from space

机译:利用基于物理的生态水文模型和来自太空的L波段微波遥感观测,对坡面尺度土壤水分进行估算

摘要

Soil moisture is a critical hydrosphere state variable that links the global water, energy, and carbon cycles. Knowledge of soil moisture at scales of individual hillslopes (10's to 100's of meters) is critical to advancing applications such as landslide prediction, rainfall-runoff modeling, and wildland fire fuel load assessment. This thesis develops a data assimilation framework that employs the ensemble Kalman Filter (EnKF) to estimate the spatial distribution of soil moisture at hillslope scales by combining uncertain model estimates with noisy active and passive L-band microwave observations. Uncertainty in the modeled soil moisture state is estimated through Monte Carlo simulations with an existing spatially distributed ecohydrology model. Application of the EnKF to estimate hillslope-scale soil moisture in a watershed critically depends on: (1) identification of factors contributing to uncertainty in soil moisture, (2) adequate representation of the sources of uncertainty in soil moisture, and (3) formulation of an observing system to estimate the geophysically observable quantities based on the modeled soil moisture. Uncertainty in the modeled soil moisture distribution arises principally from uncertainty in the hydrometeorological forcings and imperfect knowledge of the soil parameters required as input to the model. Three stochastic models are used in combination to simulate uncertain hourly hydrometeorological forcings for the model. Soil parameter sets are generated using a stochastic approach that samples low probability but potentially high consequence parameter values and preserves correlation among the parameters. The observing system recognizes the role of the model in organizing the factors effecting emission and reflection of L-band microwave energy and emphasizes the role of topography in determining the satellite viewing geometry at hillslope scales.
机译:土壤水分是连​​接全球水,能源和碳循环的关键水圈状态变量。了解各个坡度(10到100米)的土壤湿度对于推进诸如滑坡预测,降雨径流模拟和野火燃料负荷评估等应用是至关重要的。本文开发了一个数据同化框架,该模型利用集合卡尔曼滤波器(EnKF)通过将不确定的模型估计值与有噪声的有源和无源L波段微波观测值相结合,来估算坡度尺度上土壤水分的空间分布。利用现有的空间分布生态水文模型,通过蒙特卡洛模拟来估算建模的土壤水分状态的不确定性。 EnKF在估算流域内坡面规模土壤水分方面的应用关键取决于:(1)识别导致土壤水分不确定性的因素;(2)充分表示土壤水分不确定性的来源;以及(3)公式观测系统基于模型土壤湿度估算地球物理可观测量。建模的土壤水分分布的不确定性主要是由于水文气象强迫的不确定性以及对作为模型输入所需的土壤参数知识的不完善所致。结合使用三个随机模型来模拟该模型的不确定性每小时水文气象强迫。土壤参数集是使用随机方法生成的,该方法会采样低概率但潜在高后果参数值,并保留参数之间的相关性。观测系统认识到该模型在组织影响L波段微波能量发射和反射的因素中的作用,并强调了地形在确定坡度尺度上的卫星观测几何形状方面的作用。

著录项

  • 作者

    Flores Alejandro Nicolas;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号