首页> 外文OA文献 >Capacitated Trees, Capacitated Routing, and Associated Polyhedra
【2h】

Capacitated Trees, Capacitated Routing, and Associated Polyhedra

机译:Capateitated Trees,Capateitated Routing和associated polyhedra

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the polyhedral structure of two related core combinatorial problems: the subtree cardinalityconstrained minimal spanning tree problem and the identical customer vehicle routing problem. For each of these problems, and for a forest relaxation of the minimal spanning tree problem, we introduce a number of new valid inequalities and specify conditions for ensuring when these inequalities are facets for the associated integer polyhedra. The inequalities are defined by one of several underlying support graphs: (i) a multistar, a "star" with a clique replacing the central vertex; (ii) a clique cluster, a collection of cliques intersecting at a single vertex, or more generally at a central" clique; and (iii) a ladybug, consisting of a multistar as a head and a clique as a body. We also consider packing (generalized subtour elimination) constraints, as well as several variants of our basic inequalities, such as partial multistars, whose satellite vertices need not be connected to all of the central vertices. Our development highlights the relationship between the capacitated tree and capacitated forest polytopes and a so-called path-partitioning polytope,and shows how to use monotone polytopes and a set of simple exchange arguments to prove that valid inequalities are facets.
机译:我们研究了两个相关的核心组合问题的多面体结构:子树基数约束最小生成树问题和相同的客户车辆路径问题。对于这些问题中的每一个,以及对于最小生成树问题的森林松弛,我们引入了许多新的有效不等式,并指定了条件以确保这些不等式何时是关联整数多面体的方面。不等式由几个潜在的支持图之一定义:(i)多星,即用团代替中心顶点的“星”; (ii)一个团簇,一个在单个顶点上相交的团簇,或更一般地说是在一个中央“团”相交;和(iii)瓢虫,由一个多星的头和一个团的体组成。打包(广义子轮廓消除)约束,以及我们一些基本不等式的变体,例如部分多星,它们的卫星顶点不需要与所有中心顶点相连,因此我们的发展突出了功能强大的树和功能强大的森林多面体之间的关系。以及所谓的路径划分多面体,展示了如何使用单调多面体和一组简单的交换参数来证明有效不等式是一个方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号