首页> 外文OA文献 >Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots
【2h】

Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots

机译:在双足步行机器人的控制中利用固有的鲁棒性和自然动力学

摘要

Walking is an easy task for most humans and animals. Two characteristics which make it easy are the inherent robustness (tolerance to variation) of the walking problem and the natural dynamics of the walking mechanism. In this thesis we show how understanding and exploiting these two characteristics can aid in the control of bipedal robots. Inherent robustness allows for the use of simple, low impedance controllers. Natural dynamics reduces the requirements of the controller. We present a series of simple physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane) control algorithms. The first uses simple strategies to control the robot to walk. The second exploits the natural dynamics of a kneecap, compliant ankle, and passive swing-leg. The third achieves fast swing of the swing-leg in order to enable the robot to walk quickly (1.25m). These algorithms are implemented on Spring Flamingo, a planar bipedal walking robot, which was designed and built for this thesis. Using these algorithms, the robot can stand and balance, start and stop walking, walk at a range of speeds, and traverse slopes and rolling terrain. Three-dimensional walking on flat ground is implemented and tested in simulation. The dynamics of the sagittal plane are sufficiently decoupled from the dynamics of the frontal and transverse planes such that control.-of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms. Tests of this approach on a real three-dimensional robot will lead to a more complete understanding of the control of bipedal walking in robots and humans.
机译:对于大多数人和动物而言,步行都是一件容易的事。使行走变得容易的两个特征是行走问题的固有鲁棒性(对变化的耐受性)和行走机构的自然动力。在本文中,我们展示了如何理解和利用这两个特性可以帮助控制双足机器人。固有的鲁棒性允许使用简单的低阻抗控制器。自然动力学降低了控制器的要求。我们提出了一系列两足行走的简单物理模型。从这些模型中获得的见解可用于开发三种平面(仅在矢状平面内运动)控制算法。第一种使用简单的策略来控制机器人的行走。第二种方法利用了膝盖骨,顺应性脚踝和被动式摆动腿的自然动力。第三步实现摆动腿的快速摆动,以使机器人能够快速行走(1.25m)。这些算法是在Spring Flamingo(平面双足步行机器人)上实现的,该机器人是为此论文设计和构建的。使用这些算法,机器人可以站立和平衡,开始和停止行走,以一定速度行走,横穿斜坡和崎rolling地形。在平面上进行三维行走,并在仿真中进行了测试。矢状面的动力学与额叶和横断面的动力学充分分离,从而可以分别处理每个矢状面的控制。我们通过在平面算法中增加横向平衡来实现三维步行。在真实的三维机器人上对该方法进行的测试将使您更加全面地了解机器人和人类中的双足行走控制。

著录项

  • 作者

    Pratt Jerry E;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号