首页> 外文OA文献 >A system for scalable 3D visualization and editing of connectomic data
【2h】

A system for scalable 3D visualization and editing of connectomic data

机译:用于可扩展3D可视化和编辑连接组数据的系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The new field of connectomics is using technological advances in microscopy and neural computation to form a detailed understanding of structure and connectivity of neurons. Using the vast amounts of imagery generated by light and electron microscopes, connectomic analysis segments the image data to define 3D regions, forming neural-networks called connectomes. Yet as the dimensions of these volumes grow from hundreds to thousands of pixels or more, connectomics is pushing the computational limits of what can be interactively displayed and manipulated in a 3D environment. The computational cost of rendering in 3D is compounded by the vast size and number of segmented regions that can be formed from segmentation analysis. As a result, most neural data sets are too large and complex to be handled by conventional hardware using standard rendering techniques. This thesis describes a scalable system for visualizing large connectomic data using multiple resolution meshes for performance while providing focused voxel rendering when editing for precision. After pre-processing a given set of data, users of the system are able to visualize neural data in real-time while having the ability to make detailed adjustments at the single voxel scale. The design and implementation of the system are discussed and evaluated.
机译:连接组学的新领域是利用显微镜和神经计算技术的进步来形成对神经​​元结构和连通性的详细了解。使用光学和电子显微镜产生的大量图像,连接组学分析将图像数据分割成3D区域,形成称为连接组的神经网络。然而,随着这些体积的尺寸从数百个像素增长到数千个像素或更多,connectomics推动了在3D环境中可以交互显示和操作的计算极限。 3D渲染的计算成本与可从分割分析中形成的分割区域的巨大尺寸和数量混合在一起。结果,大多数神经数据集太大且太复杂,以致于常规硬件无法使用标准渲染技术来处理。本文介绍了一种可伸缩系统,该系统可使用多分辨率网格可视化大型连接体数据,以提高性能,同时在进行精度编辑时提供聚焦的体素渲染。在预处理了给定的数据集之后,系统的用户能够实时可视化神经数据,同时能够在单个体素标度上进行详细调整。讨论并评估了系统的设计和实现。

著录项

  • 作者

    Warne Brett M;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号