首页> 外文OA文献 >Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones
【2h】

Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

机译:近海涡轮机的极端风浪:沿海地区设计和运行的耦合大气和波浪模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The X-WiWa project was motivated by Denmark's long term vision for off-shore wind energy and the many technical and scientic challenges in existing methodologies for assessing the design parameters, for both winds and waves.X-WiWa succeeded in developing a most up-to-date modeling system for wind modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave modelSWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST (Hereinafter the WRF-WBLM-SWAN model). WBLM is implementedin SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave modeling, which was considered a major improvement to previous attempts in the literature. This methodology thus provides an option to avoid the parametrization of an often used interface parameter, the roughness length. Many parametrization schemes for the roughness length have brought diverse estimates and associated uncertainties to the modelled wind speed. Data validation using measurements from the Baltic Sea and North Sea around Denmark suggests that the coupled modeling system WRF-WBLM-SWAN outperforms the non-coupled, no-wave, WRF modeling of wind; an improvement by 10% or more is present at strong winds, which can aect the choice of the off-shore wind turbine type.X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability,air density, currents and new wind drag relations. X-WiWa suggests that, implementation of an online coupling technology does not necessarily provide better estimation of the waves, if the physics have not been properly described. This issupported by the comparisons of the modeled wave data between offline MIKE 21 SW modeling and the WRF-WBLM-SWAN modeling. The two provide comparably good wave calculations for coastal areas but the latter underestimatesthe wave height for far offshore areas, which is speculated to be related to the dissipation description in the wave source functions, where further improvement is seen necessary. X-WiWa puts modeling efforts on storms that are defined to be contributors to the extreme wind and extreme significant wave height through the annual maximum method. Thus for 23 years from 1994 to 2016, 429 storm days are simulated for the extreme wind, and for 1994 to 2014, 932 storm days are simulated for the extreme signicant wave height. The 50-year winds at 10 m, 50 m and 100 m over the waters around Denmark are calculated and validated and agreement is satisfactory. The 50-year significant wave height for the Danish waters and surrounding North Sea and Baltic Sea are presented from the online and offline systems. The modeling systems, data, analysis, results and publications are introduced and provided on www.xwiwa.dk. These outputs are expected to be useful for general offshore wind and wave applications such as Operation and Maintenance, Forecasting, and Design.
机译:X-WiWa项目受丹麦对海上风能的长期愿景以及现有评估风和浪设计参数的方法学中的许多技术和科学挑战的推动.X-WiWa成功地开发了一种海上风电场风能建模的最新建模系统。该模型系统由大气天气研究和预报(WRF)模型,波浪模型SWAN和波浪边界层模型WBLM的接口组成,该模型在海洋-大气-波浪-沉积物耦合输运模型系统COAWST的框架内(以下简称WRF) -WBLM-SWAN模型)。 WBLM在SWAN中实现,它在最低的大气层中计算应力和动能预算,在该最低的大气层中,将波感应应力引入大气建模。 WBLM确保在大气和波浪建模中均能一致地计算应力,这被认为是对先前文献尝试的重大改进。因此,该方法学提供了避免经常使用的界面参数(粗糙度长度)的参数化的选项。粗糙度长度的许多参数化方案为建模风速带来了多种估计和相关的不确定性。使用来自丹麦各地的波罗的海和北海的测量数据进行的数据验证表明,耦合建模系统WRF-WBLM-SWAN优于风的非耦合无波浪WRF建模; X-WiWa检验了各种用于波浪建模的方法,在强风中可以提高10%或更多,这可以影响对海上风力涡轮机类型的选择。考虑到稳定性,空气密度,气流和新的风阻关系,已改进了使用大气数据(例如WRF或全局再分析风场)与MIKE 21 SW模型的离线耦合系统。 X-WiWa建议,如果没有正确描述物理原理,则在线耦合技术的实施并不一定能提供对波的更好估计。脱机MIKE 21 SW建模与WRF-WBLM-SWAN建模之间的建模波数据的比较支持了这一点。两者为沿海地区提供了相对较好的波浪计算,但后者低估了远海地区的波浪高度,据推测这与波浪源功能中的耗散描述有关,需要进一步改善。 X-WiWa通过年度最大值方法对被定义为造成极端风和极端显着波高的风暴进行了建模。因此,在1994年至2016年的23年中,模拟了429个风暴日的极端风,而在1994年至2014年,模拟了932个风暴日的极端风高。计算并验证了丹麦周围水域10 m,50 m和100 m的50年风向,并取得了令人满意的协议。在线和离线系统显示了丹麦水域以及北海和波罗的海50年的重要波高。在www.xwiwa.dk上介绍并提供了建模系统,数据,分析,结果和出版物。这些输出有望用于一般的海上风电应用,例如运营和维护,预测和设计。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号