首页> 外文OA文献 >Influence of curing profile and fibre architecture on the fatigue resistance of composite materials for wind turbine blades
【2h】

Influence of curing profile and fibre architecture on the fatigue resistance of composite materials for wind turbine blades

机译:固化剖面和纤维结构对风力机叶片复合材料抗疲劳性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fatigue performance of unidirectional glass fibre reinforced epoxy is found to be highly dependent on the manufacturing conditions, where a low manufacturing temperature, for the investigated wind turbine relevant composite material system, is found to improve the tension/tension fatigue life-time with a factor of 10 ifcompared with a corresponding laminate manufactured at a high manufacturing temperature. It should be noted that a low manufacturing temperature will increased the required mould time significantly and thereby influence the cost of the manufactured wind turbine blade. In addition, the thick laminates typically used in the root section of the wind turbine blades will experience significant exothermically generated temperature raise during the curing process increasing the local manufacturing temperature. The tension/tension fatigue life-time1 has been investigated using 3D x-ray computer tomography. Thereby, it has been found during ex-situ fatigue studies, that the fatigue failure mechanism is highly influenced by transverse cracking in the so-called backing bundles which is present in order to ease the handling during the dry fabric layup during wind turbine blade manufacturing. It is a failure mechanism which is judge to be highly influenced by the magnitude of the residual stresses exhibit in the matrix material and therefore also in the secondary oriented backing bundles. Using fibre Bragg grated optical fibres2; the build-up of the cure-induced strains in the fibre-reinforcement has been investigated during a variety of curing profiles of the used epoxy material system. Thereby, it is possible to observe that even though the overall chemical shrinkage of the epoxy material system is independent on the chosen curing profile, the location of the gel-point and thereby the amount of shrinkage occurring in the solid state is highly influenced. During the study, it is therefore documented that even though a short mould time may be beneficial lowering the manufacturing cost, it has a drawback on the fatigue life time. In addition, it can be expected that the internal part of the thick laminates used in the root sections of a wind turbine blade has a lower fatigue resistance compared with the composite materials used elsewhere.
机译:发现单向玻璃纤维增​​强环氧树脂的疲劳性能高度依赖于制造条件,对于研究的风力涡轮机相关复合材料系统,低制造温度可提高拉力/拉力疲劳寿命,且使用寿命低。如果与在较高制造温度下制造的相应层压板相比,则为10倍。应当注意的是,较低的制造温度将显着增加所需的成型时间,从而影响所制造的风力涡轮机叶片的成本。另外,通常在风力涡轮机叶片的根部中使用的厚层压件将在固化过程中经历放热产生的显着放热升高,从而增加局部制造温度。使用3D X射线计算机断层扫描技术研究了拉力/拉力疲劳寿命。因此,已经发现在异位疲劳研究期间,疲劳破坏机理受到所谓背衬束中横向裂纹的强烈影响,该背衬束是为了在风力涡轮机叶片制造过程中减轻干织物铺叠过程中的处理。这是一种失效机理,据判断,该失效机理受到基质材料中以及因此次要取向背衬束中残余应力的大小的很大影响。使用布拉格光栅磨碎的光纤2;在使用过的环氧材料体系的各种固化过程中,已经研究了纤维增强中固化引起的应变的积累。由此,可以观察到,即使环氧材料体系的总体化学收缩率与所选择的固化曲线无关,凝胶点的位置以及因此在固态发生的收缩率也受到很大影响。因此,在研究过程中,有文献证明,即使较短的模具时间可能有利于降低制造成本,但它对疲劳寿命也有不利影响。另外,可以预期的是,与在其他地方使用的复合材料相比,在风力涡轮机叶片的根部部分中使用的厚层压板的内部具有较低的抗疲劳性。

著录项

  • 作者

    Mikkelsen Lars Pilgaard;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号