首页> 外文OA文献 >Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping
【2h】

Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

机译:使用卷积神经网络进行门和柜识别以及用于手柄检测和抓取的实时方法融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form of reducing the search space, several methods to extract point cloud data and a mobile robot to interact with the objects. The framework consists of the following components: The implementation of a CNN to extract a Region of Interest (ROI) from an image corresponding to a door or cabinet. Several vision based techniques to detect handles inside the ROI and its 3D positioning. A complementary plane segmentation method to differentiate door/cabinet from the handle. An algorithm to fuse both approaches robustly and extract essential information from the handle for robotic grasping (i.e. handle point cloud, door plane model, grasping locations, turning orientation, orthogonal vector to door). A mobile robot for grasping the handle. The system assumes no prior knowledge of the environment.
机译:在本文中,我们提出了一种新的方法,可以可靠地识别门,橱柜及其相应的把手,特别着重于从把手中提取有用的特征,然后进行操作。该系统的新颖性依靠卷积神经网络(CNN)的组合(一种减少搜索空间的形式),几种提取点云数据的方法以及一种与对象进行交互的移动机器人。该框架包括以下组件:CNN的实现,用于从与门或橱柜相对应的图像中提取感兴趣区域(ROI)。几种基于视觉的技术可检测ROI内的手柄及其3D定位。一种互补的平面分割方法,可将门/柜子与把手区分开。一种将两种方法稳健融合并从手柄中提取必要信息以进行机器人抓取的算法(即手柄点云,门平面模型,抓取位置,转向方向,与门正交的矢量)。用于抓握手柄的移动机器人。该系统不具备环境先验知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号